Skip to main content
Log in

Protein quality of germinated Phaseolus vulgaris

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Advantages of seed germination consist of an increase in the bioavailability of proteins as well as the change in the antinutritional factors which limit their utilization. Throughout this work, the effects of germination and cooking after germination on the protein in black and white beans (Phaseolus vulgaris) were evaluated. Antinutritional factors that affect the utilization of such protein were also assessed. The amounts of protein, available lysine, tannins, PER, and protein digestibility in vitro and apparent, of beans germinated and germinated-cooked were quantified. The germination significantly (p≤0.05) increased the content of proteins, inactived trypsin inhibitors, and raised the available lysine. Germination and cooking completely inactivated the trypsin inhibitors, which became lysine less available, decreased tannins, and increased protein digestibility and PER value. Differences between black and white beans were observed and attributed to variations in structure, composition, and varieties, among other factors. Cooking complements the effect of germination by improving the protein quality of P. vulgaris and increasing its bioavailability for the human consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liener I (1994) CRC Crit Rev Food Sci 34:31–67

    Article  CAS  Google Scholar 

  2. Almas K, Bender A (1980) J Sci Food Agric 31:448–452

    Article  CAS  Google Scholar 

  3. Oloyo RA (2004) Food Chem 85:497–502

    Article  CAS  Google Scholar 

  4. AOAC (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemist, Washington, DC

    Google Scholar 

  5. Kakade M, Liener I (1969) Anal Biochem 27(2):273–280

    Article  PubMed  CAS  Google Scholar 

  6. Kakade M, Rackis J, McGhee J, Puski G (1974) Am Assoc Cereal Chem 51:376–382

    CAS  Google Scholar 

  7. Vidal-Valverde C, Frias J, Díaz-Pollan C, Fernández M, López-Jurado M, Urbano G (1997) J Agric Food Chem 45:3559–3564

    Article  CAS  Google Scholar 

  8. Price M, Butler L (1977) J Agric Food Chem 25(6):1268–1273

    Article  CAS  Google Scholar 

  9. Hsu H, W-Vavak D, Satterlle L, Miller G (1977) J Food Sci 42:1269–1273

    Article  CAS  Google Scholar 

  10. Allison JB (1955) Phys Rev 35:664–700

    CAS  Google Scholar 

  11. Sangronis E, Machado C (2004) Interciencia 29:80–85

    Google Scholar 

  12. Uwaegbute A, Iroegbu C, Eke O (2000) Food Chem 68:141–146

    Article  CAS  Google Scholar 

  13. Kavas A, Nehir El S (1992) Chem Mikrobiol Technol Lebensm 14:3–9

    CAS  Google Scholar 

  14. Alonso R, Aguirre A, Marzo F (2000) Food Chem 68:159–165

    Article  CAS  Google Scholar 

  15. Idouraine A, Tinsley A, Weber W (1989) J Food Sci 54:114–117

    Article  Google Scholar 

  16. Kuan Lee C, Karunanithy R (1990) J Sci Food Agric 51:437–445

    Article  Google Scholar 

  17. Donangelo C, Trugo L, Trugo N, Eggum B (1995) Food Chem 53:23–27

    Article  CAS  Google Scholar 

  18. Ishiwi CN (2004) Niger Food J 22:7–9

    Google Scholar 

  19. Trugo L, Donangelo N, Trugo M, Bach K (2000) J Agric Food Chem 48:2082–2086

    Article  PubMed  CAS  Google Scholar 

  20. Trugo L, Ramos L, Trugo N, Souza M (1990) Food Chem 36:53–61

    Article  CAS  Google Scholar 

  21. Silva L, Trugo L (1996) J Food Biochem 20:239–240

    Article  Google Scholar 

  22. Burbano C, Muzquiz M, Ayet G, Cuadrado C, Pedrosa M (1999) J Sci Food Agric 79:1468–1472

    Article  CAS  Google Scholar 

  23. Dhurandhar N, Chang K (1990) J Food Sci 55(2):470–474

    Article  CAS  Google Scholar 

  24. Brenes A, Brenes J (1993) IX Curso de especialización FEDNA, Barcelona, España

    Google Scholar 

  25. Ghorpadhe VM, Kadam SS (1985) In: Salunkhe DK, Kadam SS (eds), vol III. CRC Boca Raton, FL, pp 165–176

    Google Scholar 

  26. Reddy NR, Pierson MD, Sathe SK, Salunkhe DK (1985) J Am Oil Chem Soc 62(3):541–549

    Article  CAS  Google Scholar 

  27. Sathe S (2002) Crit Rev Biotechnol 22(2):175–223

    Article  PubMed  CAS  Google Scholar 

  28. Muzquiz M, Burbano C, Ayet G, Pedrosa M (1999) Biotechnol Agron Soc Environ 4:210–216

    Google Scholar 

  29. Costa de Oliveira A, Silva K, Helbig E, Pissini S, Carrazo F (2001) Arch Latinoam Nutr 51(3):276–283

    PubMed  CAS  Google Scholar 

  30. Pereira CA, Costa NM (2002) Rev Nutr Campinas 15(1):5–14

    CAS  Google Scholar 

  31. Rockland LB, Radke T (1981) Food Technol 3:79–82

    Google Scholar 

  32. Bressani R (2002) In: Proceedings of an International Workshop, Honduras, pp 164–188

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sangronis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sangronis, E., Rodríguez, M., Cava, R. et al. Protein quality of germinated Phaseolus vulgaris . Eur Food Res Technol 222, 144–148 (2006). https://doi.org/10.1007/s00217-005-0137-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-005-0137-4

Keywords

Navigation