Skip to main content
Log in

A method to detect the parasitic nematodes from the family Anisakidae, in Sardina pilchardus, using specific primers of 18 S DNA gene

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Anisakiasis is the infestation of man by the third larval stage of the Anisakidae family parasites, caused by the consumption of raw or undercooked seafood. The hosts of the third larvae parasite are marine fishes, among which Sardina pilchardus is of high commercial interest in many countries. So, the detection of anisakid larvae in fisheries products (fresh and processed) is of great interest to a rapid and feasible diagnosis of parasitism. Currently, there are different types of parasite detection methods but they are all difficult and tedious. The aim of this work was to detect, using DNA-based techniques, the presence of anisakid larvae in the entire fish host. Three pairs of primers were designed in the 18 S DNA gene taking into account the maximum matching between the anisakid species sequences and the minimum matching concerning for both the fish species and some other groups of organisms that parasitize fish (non-anisakid nematodes, trematodes, and cestodes). Experimental mixtures of parasite and fish host were made and the sensitivity of anisakid DNA detection tested by PCR. All the above primers and two others combinations of them were specific for the nematode group within the studied species, and the sensitivity of detection was on the order of 1 part of nematode to 100 000 parts of fish (anisakid weight:fish sample fresh weight = 1:≈100 000).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ward D, Bernard D, Collette R, Kraemer D, Hart K, Price R, Otwell S (1997) Hazards found in seafoods, Appendix III. In HACCP: Hazard analysis and critical control point training curriculum: 173–188

  2. Ruitenberg EJ, van Knapen F, Weiss JW (1979) Vet Q 1:5–13

    Google Scholar 

  3. Myjak P, Szostakowska B, Wojciechowski J, Pietkiewicz H Rokicki J (1994) Arch Fish Mar Res 42(2):149–161

    Google Scholar 

  4. Sakanary JA, Mckerrow JH (1989) Clin Microbiol Rev 2:278–284

    PubMed  Google Scholar 

  5. Ishikura H, Kikuchi K, Nagasawa K (1993) In: Sun T (ed) Progress in clinical parasitology. Springer-Verlag, New York, 3:43–101

  6. Huss HH, Reilly A, Ben Embarek PK (2000) Food Control 11:149–156

    Article  Google Scholar 

  7. Louredo A, Rosa F, Arribas V, Sanz E, Bernardo L, Goyanes A (1997) Rev Esp Enferm Dig 89(5):403–406

    PubMed  Google Scholar 

  8. Ortega JD Martinez-Cocera C (2000) Alergol Inmunol Clin 15:267–272

    Google Scholar 

  9. Karl H, Roepstorff A, Huss HH, Bloemsa B (1995) J Food Technol 29:661–670

    Article  Google Scholar 

  10. Baeza ML, Zubeldia JM, Rubio M (2001) ACI Int 13/6

  11. Audicana L, Audicana M, Corres L, Kennedy M (1997) Vet Rec, March 1

  12. Montoro A, Perteguer MJ, Chivato T, Laguna R, Cuellar C (1996) Allergy 51:27

    Article  Google Scholar 

  13. Fernandez de Corres L, Audicana M, del Pozo M, Munoz D, Fernandez E, Navarro J, Garcia M, Diez J (1996) J Invest Allergol Clin Immunol 6:315–319

    CAS  Google Scholar 

  14. Estrada RJL, Gozalo RF (1997) Allergol Immunopathol 25:95–97

    Google Scholar 

  15. Sastre J, Lluch-Bernal M, Fernández-Caldas E, Marañón F, Quirce S, Arrieta I, Del Amo A, Lahoz C (2000) Alergol Inmunol Clin 15:225–229

    Google Scholar 

  16. Audicana M, Ansotegui I, Corres L, Kennedy M (2002) Trends in Parasitology 18(1):20–25

    Article  PubMed  Google Scholar 

  17. Lu CC, Nguyen S, Morris, Hill D, Sakanari AJ (1998) Exp. Parasitol 89:257–261

    Article  PubMed  CAS  Google Scholar 

  18. Buendia E (2000) Alergol Inmunol Clin 15:221–222

    Google Scholar 

  19. Chitwood B, Chitwood M (1974) Introduction to Nematology. University Park Press, Baltimore.

    Google Scholar 

  20. Dixon BR (1995) Isolation and identification of anisakid rounworm larvae in fish. Gouvernement du Canada, Health Protection Branch, ExFLP-1, September

  21. del Pozo MD, Moneo I, Fernandez de Corres L, Audicana MT, Munoz D, Fernandez E, Navarro JA, Garcia M (1996) J Allergy Clin Immunol 97:977–84

    Article  PubMed  CAS  Google Scholar 

  22. Iglesias R, Leiro J, Ubeira F, Santamarina M, Navarrete I, Sanmartin M (1996) Parasitol Res 82:378–381

    Article  PubMed  CAS  Google Scholar 

  23. Mattiucci S, dAmelio S, Rokicki J (1989) Parassitologia 31:45–49

    PubMed  CAS  Google Scholar 

  24. Brattey J, Davidson W (1996) Can J Fish Aquat Sci 53(2):342–349

    Article  Google Scholar 

  25. Després L, Adamson M, McDonald T (1994) Can J Fish Aquat Sci 52(1):129–133

    Google Scholar 

  26. Renon P, Malandra R (1993) Arch Vet Ital 44(3):118-130

    Google Scholar 

  27. Sakanari JA, McKerrow JH(1989) Clin Microbiol Rev 2(3):278–284

    PubMed  CAS  Google Scholar 

  28. Smith JW, Wootten R (1984) Pseudoterranova larvae (codworm) (Nematoda) in fish. Fiches didentification des maladies et parasites des poissons, crustacés et mollusques, CIEM, fiches nos 7, 8 et 9.

  29. Berland B (1991) Hysterothylacium aduncum (Nematoda) in fish. Fiches didentification des maladies et parasites des poissons, crustacés et mollusques, CIEM, fiche no 44

  30. Hartwich G (1974) In: Anderson RC, Chabaud AG, Willmott S (eds) CIH keys to the nematode parasites of vertebrates. Commonwealth agricultural bureau, Farnham royal,UK, pp 1–15

  31. Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete JR, Mackey LY, Dorris M, Frisse LF, Vida JT, Thomas WK (1998) Nature 392:71–75

    Article  PubMed  CAS  Google Scholar 

  32. Markell EK, John DT, Krotoski WA (1999) Markell and Voge's Medical Parasitology. 8th ed. WB Saunders, Philadelphia, PA, pp 269–303

Download references

Acknowledgements

We wish to thank René Galzin and Joseph Jourdane who kindly provided all the laboratory support for the work. We acknowledge the technical assistance on equipment and services managed by Jean François Allienne. We also thank Paula Ramos from IPIMAR and Stephanie Leroy, Jérome Boissier, and Andrea Simkova from the Laboratoire de Biologie Animale for gifts of nematode and trematode samples. Finally, we are grateful to Eric Taylor for his advices on the English correction of this manuscript. The work was supported by the grant SFRH/BSAB/223/2001 from POCTI (Formar e Qualificar–Medida 1.1) from FCT

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Teia Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, A.T., Sasal, P., Verneau, O. et al. A method to detect the parasitic nematodes from the family Anisakidae, in Sardina pilchardus, using specific primers of 18 S DNA gene. Eur Food Res Technol 222, 71–77 (2006). https://doi.org/10.1007/s00217-005-0052-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-005-0052-8

Keywords

Navigation