Skip to main content
Log in

Supercritical fluid extraction of antioxidant and antimicrobial compounds from Laurus nobilis L. Chemical and functional characterization

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Extraction of laurel leaves by using supercritical carbon dioxide was carried out on a supercritical fluid (SF) pilot-scale plant. The extraction pressure and temperature were set to 250 bar and 60°C, respectively, using a 4% of ethanol as modifier. The employed apparatus, owing to a two-stage separation, allowed us to obtain two different fractions (F1 and F2), whose antioxidant and antimicrobial activities were investigated. Two different methods, β-carotene bleaching test and DPPH free radical–scavenging assay, were carried out to determine the antioxidant activity. Moreover, antimicrobial activity of laurel fractions was tested against Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, Pseudomonas aeruginosa ATCC 10145, Escherichia coli ATCC 11775, Candida albicans ATCC 60193 and Aspergillus niger ATCC 16404. Minimum inhibitory concentration (MIC) and minimal bactericidal and fungicidal concentration (MBC) were obtained. Both fractions showed a similar antioxidant activity, although it was slightly higher for the fraction recovered in separator 2. However, antimicrobial activity against the microorganisms tested was only found when fraction 2 was used. Staphylococcus aureus was the most sensitive microorganism to this fraction, with maximal inhibition zones (25 mm) and the lowest MBC values (1.25 mg/ml), whereas the least susceptible was the fungi Aspergillus niger. In order to determine the compounds responsible for the antimicrobial activity, fraction 2 was analysed by GC–MS; results obtained showed that most of the compounds identified in the supercritical extract have been previously described to show antimicrobial activity; among them, the major compound found in the supercritical extract corresponded to a sesquiterpene lactone of the germacrolide type (6-epi-desacetyllaurenobiolide) previously described in laurel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  1. Barlow SM (1990) In: Hudson BJF (ed) Food antioxidants. Elsevier, London, pp 253-307

  2. Namiki M (1990) Crit Rev Food Sci 29:273–300

    CAS  Google Scholar 

  3. Hammer KA, Carson C F, Riley TV (1999) J Appl Microbiol 86:985–990

    Article  PubMed  CAS  Google Scholar 

  4. Valero M, Salmerón MC (2002) Int J Food Microbiol 2648:1–9

    Google Scholar 

  5. Dorman HJD, Peltoketo A, Hiltunen R, Tilkkanen MJ (2003) Food Chem 83:255–262

    Article  CAS  Google Scholar 

  6. Sahin F, Güllüce M, Daferera D, Sökmen A, Sömen M, Polissiou M, Agar G, Ozer H (2004) Food Control 14:549–557

    Google Scholar 

  7. Tomaino A, Cimino F, Zimbalatti V, Venuti V, Sulfaro V, De Pascale A, Saija A (2005) Food Chem 89:549–554

    Article  CAS  Google Scholar 

  8. Bouzouita N, Kachouri F, Hamdi M, Chaabouni MM (2003) Flavour Fragr J 18:380–383

    Article  CAS  Google Scholar 

  9. Simic A, Sokovic D, Ristic M, Grujic-Jovanovic S, Vukojevic J, Marin PD (2004) Phytother Res 18:713–717

    Article  PubMed  CAS  Google Scholar 

  10. Simic M, Kundakovic T, Kovacevic N (2003) Fitoterapia 74:613–616

    Article  PubMed  CAS  Google Scholar 

  11. Skerget M, Kotnik P, Hadolin M, Hras AR, Simonic M, Knez Z (2005) Food Chem 89:191–198

    Article  CAS  Google Scholar 

  12. Díaz-Maroto M C, Pérez-Coello MS, Cabezudo MD (2002) J Chromatogr A 947:23–29

    Article  PubMed  Google Scholar 

  13. Ibañez E, Oca A, Murga G, Lopez-Sebastian S, Tabera J, Reglero G (1999) J Agric Food Chem 47:400–1404

    Article  Google Scholar 

  14. Leal PF, Braga MEM, Sato DN, Carvalho JE, Marques MOM, Meireles MAA (2003) J Agric Food Chem 51:2520–2525

    Article  PubMed  CAS  Google Scholar 

  15. Santoyo S, Cavero S, Jaime L, Ibáñez E, Señorans FJ, Reglero G (2005) J Food Protect 68:790–795

    CAS  Google Scholar 

  16. Cavero S, Garcia-Risco M R, Marín FR, Jaime L, Santoyo S, Señorans FJ, Reglero G, Ibáñez E (2005) J Supercrit Fluids (in press)

  17. Señorans FJ, Ibáñez E, Cavero S, Tabera J, Reglero G (2000) J Chromatogr A 870:491–499

    Article  PubMed  Google Scholar 

  18. Brand-Williams W, Cuvelier ME, Berset C (1995) Lebensm-Wiss Technol 28:2530

    Google Scholar 

  19. Velioglu YS, Mazza G, Gao L, Oomah BD (1998). J Agric Food Chem 46:4113–4117

    Article  CAS  Google Scholar 

  20. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Method Enzymol 299:152–178

    Article  CAS  Google Scholar 

  21. NCCLS (National Committee for Clinical Laboratory Standards) (1999) Wayne, PA. M 100-S9

  22. Murray P R, Baron EJ, Pfaller MA, Tenover FC, Yolke RH (1995). Manual of clinical microbiology, 6th edn. Mosby Year Book, London

    Google Scholar 

  23. Shahidi F, Wanasundara RKJPD (1992) Crit Rev Food Sci 32:67–103

    Article  CAS  Google Scholar 

  24. Revenchon E (1997) J Supercrit Fluids 10:1–37

    Article  Google Scholar 

  25. Morongiu B, Piras A, Pani F, Proceda S, Barello M (2003) Flavour Fragr J 18:505–509

    Article  CAS  Google Scholar 

  26. Caredda A, Marongiu B, Porcedda S, Soro C (2002) Food Chem 50:1492–1496

    Article  CAS  Google Scholar 

  27. Fiorini C, Fourasté I, David B, Bessière JM (1997) Flavour Fragr J 12:91–93

    Article  CAS  Google Scholar 

  28. Davies NW (1990) J Chromatogr A 503:1–24

    Article  CAS  Google Scholar 

  29. Tada H, Takeda K (1971) Chem Comm 12:1391–1392

    Google Scholar 

  30. Bohlmann F, Adler A, King RM, Robinson H (1982) Phytochem 21:1169–1170

    Article  CAS  Google Scholar 

  31. Quijano L, Calderon JS, Gomez GF, Lopez PJ, Rios T, Fronczek FR (1984) Phytochem 23:1971–1974

    Article  CAS  Google Scholar 

  32. Inoue Y, Shiraishi A, Hada T, Hirose K, Hamashima H, Shimada J (2004) FEMS Microbiol Lett 237:325–331

    PubMed  CAS  Google Scholar 

  33. Sibanda S, Chigwada G, Poole M, Gwebu ET, Noletto JA, Schmidt JM, Rea AI, Setzer WN (2004) J Ethnophram 92:107–111

    Article  CAS  Google Scholar 

  34. Scher JM, Speakman J-B, Zapp J, Becker H (2004) Phytochem 65:2583–2588

    Article  CAS  Google Scholar 

  35. López-Malo A, Alzamora SM, Palou E (2005) Int J Food Microbiol 99:119–128

    Article  PubMed  CAS  Google Scholar 

  36. Wedge DE, Galindo JCG, Macias FA (2000) Phytochem 53:747–757

    Article  CAS  Google Scholar 

  37. Frankel EN (1979) In: Simic MG, Karel M (eds) Autoxidation in food and biological systems. Plenum Press, New York, pp 141–170

    Google Scholar 

Download references

Acknowledgements

This work was supported by CICYT projects (AGL2004-C02-01 and AGL2004-C02-02). The authors thank Dr. Jesus Sanz for his kind help in the acquisition of the MS spectra and his helpful discussions. R. Lloría thanks the CSIC for her grant

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Santoyo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santoyo, S., Lloría, R., Jaime, L. et al. Supercritical fluid extraction of antioxidant and antimicrobial compounds from Laurus nobilis L. Chemical and functional characterization. Eur Food Res Technol 222, 565–571 (2006). https://doi.org/10.1007/s00217-005-0027-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-005-0027-9

Keywords

Navigation