Skip to main content
Log in

Recent progress on charge transfer engineering in reticular framework for efficient electrochemiluminescence

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Electrochemiluminescence (ECL) is a luminescence production technique triggered by electrochemistry, which has emerged as a powerful analytical technique in bioanalysis and clinical diagnosis. During ECL, charge transfer (CT) is an important process between electrochemical excitation and luminescent emission, and dramatically affects the efficiency of exciton generation, playing a pivotal role in the light-emitting properties of nanomaterials. Reticular framework materials with intramolecular/intermolecular interactions offer a promising platform for regulating CT pathways and enhancing luminescence efficiency. Deciphering the role of intramolecular/intermolecular CT processes in reticular framework materials allows for the targeted design and synthesis of emitters with precisely controlled CT properties. This sheds light on the microscopic mechanisms of electro-optical conversion in ECL, propelling advancements in their efficiency and breakthrough applications. This mini-review focuses on recent advancements in engineering CT within reticular frameworks to boost ECL efficiency. We summarized strategies including intra-reticular charge transfer, CT between the metal and ligands, and CT between guest molecules and frameworks within reticular frameworks, which holds promise for developing next-generation ECL devices with enhanced sensitivity and light emission.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104(6):3003–36.

    Article  CAS  PubMed  Google Scholar 

  2. Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108(7):2506–53.

    Article  CAS  PubMed  Google Scholar 

  3. Ning Z, Chen M, Wu G, Zhang Y, Shen Y. Recent advances of functional nucleic acids-based electrochemiluminescent sensing. Biosens Bioelectron. 2021;191: 113462.

    Article  CAS  PubMed  Google Scholar 

  4. Yin F, Sun Q, Huang X, Wu G, Zhang Y, Shen Y. Recent progress in signal enhancement of nanomaterials-based electrochemiluminescence systems. Trends Analyt Chem. 2023;169: 117376.

    Article  CAS  Google Scholar 

  5. Knezevic S, Bouffier L, Liu B, Jiang D, Sojic N. Electrochemiluminescence microscopy: from single objects to living cells. Curr Opin Electrochem. 2022;35: 101096.

    Article  CAS  Google Scholar 

  6. Wang N, Gao H, Li Y, Li G, Chen W, Jin Z, Lei J, Wei Q, Ju H. Dual intramolecular electron transfer for in situ coreactant-embedded electrochemiluminescence microimaging of membrane protein. Angew Chem Int Ed. 2021;60(1):197–201.

    Article  CAS  Google Scholar 

  7. Wang Y, Ding J, Zhou P, Liu J, Qiao Z, Yu K, Jiang J, Su B. Electrochemiluminescence distance and reactivity of coreactants determine the sensitivity of bead-based immunoassays. Angew Chem Int Ed. 2023;62(16): e202216525.

    Article  CAS  Google Scholar 

  8. Hong D, Kim K, Jo E-J, Kim M-G. Electrochemiluminescence-incorporated lateral flow immunosensors using Ru(bpy)32+-labeled gold nanoparticles for the full-range detection of physiological C-reactive protein levels. Anal Chem. 2021;93(22):7925–32.

    Article  CAS  PubMed  Google Scholar 

  9. Li W, Zhang M, Han D, Yang H, Hong Q, Fang Y, Zhou Z, Shen Y, Liu S, Huang C, Zhu H, Zhang Y. Carbon nitride-based heterojunction photoelectrodes with modulable charge-transfer pathways toward selective biosensing. Anal Chem. 2023;95(36):13716–24.

    Article  CAS  PubMed  Google Scholar 

  10. Yu Z, Xu J, Li Y, Gong H, Wei Q, Tang D. Ferroelectric perovskite-enhanced photoelectrochemical immunoassay with the photoexcited charge-transfer of a built-in electric field. J Mater Chem C. 2021;9(40):14351–8.

    Article  CAS  Google Scholar 

  11. Zhang Q, Zhang L, Liu X-N, Li Z, Li Z, Wu X, Wang G-L, Zhao W-W. Establishing interfacial charge-transfer transitions on ferroelectric perovskites: an efficient route for photoelectrochemical bioanalysis. ACS Sensors. 2020;5(12):3827–32.

    Article  CAS  PubMed  Google Scholar 

  12. Li X, Surendran Rajasree S, Yu J, Deria P. The role of photoinduced charge transfer for photocatalysis, photoelectrocatalysis and luminescence sensing in metal-organic frameworks. Dalton Trans. 2020;49(37):12892–917.

    Article  CAS  PubMed  Google Scholar 

  13. Kapturkiewicz A. Electrochemical generation of excited intramolecular charge-transfer states. ChemElectroChem. 2017;4(7):1604–38.

    Article  CAS  Google Scholar 

  14. Gao X, Jiang G, Gao C, Prudnikau A, Hübner R, Zhan J, Zou G, Eychmüller A, Cai B. Interparticle charge-transport-enhanced electrochemiluminescence of quantum-dot aerogels. Angew Chem Int Ed. 2023;62(2): e202214487.

    Article  CAS  Google Scholar 

  15. Li Z, Kang Q, Chen L, Zhang B, Zou G, Shen D. Enhancing aqueous stability and radiative-charge-transfer efficiency of CsPbBr 3 perovskite nanocrystals via conductive silica gel coating. Electrochim Acta. 2020;330: 135332.

    Article  CAS  Google Scholar 

  16. Li Y, Lu Y, Chen Y, Zhang P, Jia N. Fullerene-promoted organic-inorganic hybrid electrochemiluminescence biosensor for sensitive detection of concanavalin A. Sens Actuators B Chem. 2023;393: 134311.

    Article  CAS  Google Scholar 

  17. Cui W-R, Li Y-J, Jiang Q-Q, Wu Q, Liang R-P, Luo Q-X, Zhang L, Liu J, Qiu J-D. Tunable covalent organic framework electrochemiluminescence from non-electroluminescent monomers. Cell Rep Phys Sci. 2022;3(2): 100630.

    Article  CAS  Google Scholar 

  18. Guo J, Li S, Wang J, Wang J. Dual-recognition immune-co-chemical ECL-sensor based on Ti, Mg@N-CDs-induced and novel signal-sensing units poly(DVB-co-PBA)-reported for alpha-fetoprotein detection. Sens Actuators B Chem. 2021;346: 130548.

    Article  CAS  Google Scholar 

  19. Yao Z, Sánchez-Lengeling B, Bobbitt NS, Bucior BJ, Kumar SGH, Collins SP, Burns T, Woo TK, Farha OK, Snurr RQ, Aspuru-Guzik A. Inverse design of nanoporous crystalline reticular materials with deep generative models. Nat Mach Intell. 2021;3(1):76–86.

    Article  Google Scholar 

  20. Liang J, Liang K. Introducing reticular chemistry into biosystems. Coord Chem Rev. 2024;501: 215572.

    Article  CAS  Google Scholar 

  21. Ploetz E, Engelke H, Lächelt U, Wuttke S. The chemistry of reticular framework nanoparticles: MOF, ZIF, and COF materials. Adv Funct Mater. 2020;30(41):1909062.

    Article  CAS  Google Scholar 

  22. Luo R, Zhu D, Ju H, Lei J. Reticular electrochemiluminescence nanoemitters: structural design and enhancement mechanism. Acc Chem Res. 2023;56(14):1920–30.

    Article  CAS  PubMed  Google Scholar 

  23. Qin X, Zhan Z, Ding Z. Progress in electrochemiluminescence biosensors based on organic framework emitters. Curr Opin Electrochem. 2023;39: 101283.

    Article  CAS  Google Scholar 

  24. Hu Z, Deibert BJ, Li J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem Soc Rev. 2014;43(16):5815–40.

    Article  CAS  PubMed  Google Scholar 

  25. Geng K, He T, Liu R, Dalapati S, Tan KT, Li Z, Tao S, Gong Y, Jiang Q, Jiang D. Covalent organic frameworks: design, synthesis, and functions. Chem Rev. 2020;120(16):8814–933.

    Article  CAS  PubMed  Google Scholar 

  26. Uribe-Romo FJ, Hunt JR, Furukawa H, Klöck C, O’Keeffe M, Yaghi OM. A crystalline imine-linked 3-D porous covalent organic framework. J Am Chem Soc. 2009;131(13):4570–1.

    Article  CAS  PubMed  Google Scholar 

  27. Dalapati S, Jin E, Addicoat M, Heine T, Jiang D. Highly emissive covalent organic frameworks. J Am Chem Soc. 2016;138(18):5797–800.

    Article  CAS  PubMed  Google Scholar 

  28. Huang Q, Li W, Mao Z, Qu L, Li Y, Zhang H, Yu T, Yang Z, Zhao J, Zhang Y, Aldred MP, Chi Z. An exceptionally flexible hydrogen-bonded organic framework with large-scale void regulation and adaptive guest accommodation abilities. Nat Commun. 2019;10(1):3074.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cao Y, Wu R, Gao Y-Y, Zhou Y, Zhu J-J. Advances of electrochemical and electrochemiluminescent sensors based on covalent organic frameworks. Nanomicro Lett. 2023;16(1):37.

    PubMed  PubMed Central  Google Scholar 

  30. Wei W, Ze H, Qiu Z. Reticular sensing materials with aggregation-induced emission characteristics. Trends Analyt Chem. 2023;161: 116997.

    Article  CAS  Google Scholar 

  31. Zhao L, Wang B, Wang C, Fan D, Liu X, Wei Q, Ju H, Wu D. Dual-strategy ECL biosensor based on rare Eu(II, III)-MOF as probe with antenna effect and sensitization for CYFRA 21–1 trace analysis. Sens Actuators B Chem. 2023;377: 133101.

    Article  CAS  Google Scholar 

  32. Allendorf MD, Bauer CA, Bhakta RK, Houk RJT. Luminescent metal-organic frameworks. Chem Soc Rev. 2009;38(5):1330–52.

    Article  CAS  PubMed  Google Scholar 

  33. Haldar R, Ghosh A, Maji TK. Charge transfer in metal-organic frameworks. ChemComm. 2023;59(12):1569–88.

    CAS  Google Scholar 

  34. Baumann AE, Burns DA, Liu B, Thoi VS. Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun Chem. 2019;2(1):86.

    Article  Google Scholar 

  35. Zhu D, Zhang Y, Bao S, Wang N, Yu S, Luo R, Ma J, Ju H, Lei J. Dual intrareticular oxidation of mixed-ligand metal-organic frameworks for stepwise electrochemiluminescence. J Am Chem Soc. 2021;143(8):3049–53.

    Article  CAS  PubMed  Google Scholar 

  36. Li Y-J, Cui W-R, Jiang Q-Q, Wu Q, Liang R-P, Luo Q-X, Qiu J-D. A general design approach toward covalent organic frameworks for highly efficient electrochemiluminescence. Nat Commun. 2021;12(1):4735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zuliani A, Khiar N, Carrillo-Carrión C. Recent progress of metal-organic frameworks as sensors in (bio)analytical fields: towards real-world applications. Anal Bioanal Chem. 2023;415(11):2005–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Song L, Gao W, Wang S, Bi H, Deng S, Cui L, Zhang C-y. Construction of an aminal-linked covalent organic framework-based electrochemiluminescent sensor for enantioselective sensing phenylalanine. Sens Actuators B Chem. 2022;373:132751.

  39. Raatikainen K, Rissanen K. Interaction between amines and N-haloimides: a new motif for unprecedentedly short Br⋯N and I⋯N halogen bonds. CrystEngComm. 2011;13(23):6972–7.

    Article  CAS  Google Scholar 

  40. Zhang P, Shen Q, Wang J, Yu M, Kang Q, Zhang W, Zou G. Intrareticular charge transfer triggered self-electrochemiluminescence of zirconium-based metal-organic framework nanoparticles for potential-resolved multiplex immunoassays with isolated coreactants. Anal Chem. 2023;95(26):10096–104.

    Article  CAS  PubMed  Google Scholar 

  41. Saha S, Bhosle AA, Chatterjee A, Banerjee M. Mechanochemical Duff reaction in solid phase for easy access to mono- and di-formyl electron-rich arenes. J Org Chem. 2023;88(14):10002–13.

    Article  CAS  PubMed  Google Scholar 

  42. Li B, Qiu W, Yap GPA, Dory YL, Claverie JP. Hydrogen-bonded organic frameworks based on endless-stacked amides for iodine capture and detection. Adv Funct Mater. 2024;34(12):2311964.

  43. Zhang N, Wang X-T, Xiong Z, Huang L-Y, Jin Y, Wang A-J, Yuan P-X, He Y-B, Feng J-J. Hydrogen bond organic frameworks as a novel electrochemiluminescence luminophore: simple synthesis and ultrasensitive biosensing. Anal Chem. 2021;93(51):17110–8.

    Article  CAS  PubMed  Google Scholar 

  44. Shen K-Y, Zhan J, Shen L, Xiong Z, Zhu H-T, Wang A-J, Yuan P-X, Feng J-J. Hydrogen bond organic frameworks as radical reactors for enhancement in ECL efficiency and their ultrasensitive biosensing. Anal Chem. 2023;95(10):4735–43.

    Article  CAS  PubMed  Google Scholar 

  45. Lu M-L, Huang W, Gao S, Zhang J-L, Liang W-B, Li Y, Yuan R, Xiao D-R. Pyrene-based hydrogen-bonded organic frameworks as new emitters with porosity- and aggregation-induced enhanced electrochemiluminescence for ultrasensitive microRNA assay. Anal Chem. 2022;94(45):15832–8.

    Article  CAS  PubMed  Google Scholar 

  46. Hou H, Wang Y, Wang Y, Luo R, Zhu D, Zhou J, Wu X, Ju H, Lei J. Intrareticular electron coupling pathway driven electrochemiluminescence in hydrogen-bonded organic frameworks. J Mater Chem C. 2022;10(39):14488–95.

    Article  CAS  Google Scholar 

  47. Jana D, Jana S. Donor-pyrene-acceptor distance-dependent intramolecular charge-transfer process: a state-specific solvation preferred to the linear-response approach. ACS Omega. 2020;5(17):9944–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luo R, Lv H, Liao Q, Wang N, Yang J, Li Y, Xi K, Wu X, Ju H, Lei J. Intrareticular charge transfer regulated electrochemiluminescence of donor-acceptor covalent organic frameworks. Nat Commun. 2021;12(1):6808.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang J-L, Yang Y, Liang W-B, Yao L-Y, Yuan R, Xiao D-R. Highly stable covalent organic framework nanosheets as a new generation of electrochemiluminescence emitters for ultrasensitive microRNA detection. Anal Chem. 2021;93(6):3258–65.

    Article  CAS  PubMed  Google Scholar 

  50. Juliá F. Ligand-to-metal charge transfer (LMCT) photochemistry at 3d-metal complexes: an emerging tool for sustainable organic synthesis. ChemCatChem. 2022;14(19): e202200916.

    Article  Google Scholar 

  51. Li P, Zhou Z, Zhao YS, Yan Y. Recent advances in luminescent metal-organic frameworks and their photonic applications. ChemComm. 2021;57(100):13678–91.

    CAS  Google Scholar 

  52. Zhao H, Wang F, Cui L, Xu X, Han X, Du Y. Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: a review. Nanomicro Lett. 2021;13(1):208.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jin Z, Zhu X, Wang N, Li Y, Ju H, Lei J. Electroactive metal-organic frameworks as emitters for self-enhanced electrochemiluminescence in aqueous medium. Angew Chem Int Ed. 2020;59(26):10446–50.

    Article  CAS  Google Scholar 

  54. Song X, Zhao L, Zhang N, Liu L, Ren X, Ma H, Luo C, Li Y, Wei Q. Zinc-based metal-organic framework with MLCT properties as an efficient electrochemiluminescence probe for trace detection of trenbolone. Anal Chem. 2022;94(40):14054–60.

    Article  CAS  PubMed  Google Scholar 

  55. Lukose B, Clancy P. A feasibility study of unconventional planar ligand spacers in chalcogenide nanocrystals. Phys Chem Chem Phys. 2016;18(20):13781–93.

    Article  CAS  PubMed  Google Scholar 

  56. Allendorf MD, Foster ME, Léonard F, Stavila V, Feng PL, Doty FP, Leong K, Ma EY, Johnston SR, Talin AA. Guest-induced emergent properties in metal-organic frameworks. J Phys Chem Lett. 2015;6(7):1182–95.

    Article  CAS  PubMed  Google Scholar 

  57. Jiang QQ, Li YJ, Wu Q, Wang X, Luo QX, Mao XL, Cai YJ, Liu X, Liang RP, Qiu JD. Guest molecular assembly strategy in covalent organic frameworks for electrochemiluminescence sensing of uranyl. Anal Chem. 2023;95(22):8696–705.

    Article  CAS  PubMed  Google Scholar 

  58. Jiang Q-Q, Wang X, Wu Q, Li Y-J, Luo Q-X, Mao X-L, Cai Y-J, Liu X, Liang R-P, Qiu J-D. Rapid charge transfer enabled by noncovalent interaction through guest insertion in supercapacitors based on covalent organic frameworks. Angew Chem Int Ed. 2023;62(52): e202313970.

    Article  CAS  Google Scholar 

  59. Han T, Cao Y, Wang J, Jiao J, Song Y, Wang L, Ma C, Chen H-Y, Zhu J-J. Crystallization-induced enhanced electrochemiluminescence from a new tris(bipyridine)ruthenium(II) derivative. Adv Funct Mater. 2023;33(12):2212394.

    Article  CAS  Google Scholar 

  60. Zhang W, Chen L, Dai S, Zhao C, Ma C, Wei L, Zhu M, Chong SY, Yang H, Liu L, Bai Y, Yu M, Xu Y, Zhu X-W, Zhu Q, An S, Sprick RS, Little MA, Wu X, Jiang S, Wu Y, Zhang Y-B, Tian H, Zhu W-H, Cooper AI. Reconstructed covalent organic frameworks. Nature. 2022;604(7904):72–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jiang H, Alezi D, Eddaoudi M. A reticular chemistry guide for the design of periodic solids. Nat Rev Mater. 2021;6(6):466–87.

    Article  CAS  Google Scholar 

  62. Kuang L, Wang S, Wan H, Chen L, Wang L, Song Y. Designing fluorescent covalent organic frameworks by controlling layer spacing, size of aromatic linker and side chains for detection of nitrofurazone. Adv Opt Mater. 2023;11(9):2202975.

    Article  CAS  Google Scholar 

  63. Wang J-X, Gutiérrez-Arzaluz L, Wang X, Almalki M, Yin J, Czaban-Jóźwiak J, Shekhah O, Zhang Y, Bakr OM, Eddaoudi M, Mohammed OF. Nearly 100% energy transfer at the interface of metal-organic frameworks for X-ray imaging scintillators. Matter. 2022;5(1):253–65.

    Article  CAS  Google Scholar 

  64. Zhang B, Xu J, Li C-T, Huang H-L, Chen M-X, Yu M-H, Chang Z, Bu X-H. Facile tuned TSCT-TADF in donor-acceptor MOF for highly adjustable photonic modules based on heterostructures crystals. Angew Chem Int Ed. 2023;62(32): e202303262.

    Article  CAS  Google Scholar 

  65. Li X, Yu J, Gosztola DJ, Fry HC, Deria P. Wavelength-dependent energy and charge transfer in MOF: a step toward artificial porous light-harvesting system. J Am Chem Soc. 2019;141(42):16849–57.

    Article  CAS  PubMed  Google Scholar 

  66. Chen Z, Wang J, Hao M, Xie Y, Liu X, Yang H, Waterhouse GIN, Wang X, Ma S. Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance. Nat Commun. 2023;14(1):1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (22074015 and 22174014).

Author information

Authors and Affiliations

Authors

Contributions

Xinzhou Huang: conceptualization, writing—original draft, writing—review and editing. Qian Sun: conceptualization, writing—original draft, writing—review and editing. Jinjin Zhao: writing—review and editing, supervision. Guoqiu Wu: writing—review and editing. Yuanjian Zhang: writing—review and editing. Yanfei Shen: writing—review and editing, funding acquisition, supervision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jinjin Zhao or Yanfei Shen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Luminescent Nanomaterials for Biosensing and Bioimaging with guest editors Li Shang, Chih-Ching Huang, and Xavier Le Guével.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Sun, Q., Zhao, J. et al. Recent progress on charge transfer engineering in reticular framework for efficient electrochemiluminescence. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05279-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05279-9

Keywords

Navigation