Skip to main content

Interparticle Charge Transport Enhances Electrochemiluminescence of Quantum Dots

  • Chapter
  • First Online:
Advances in Fabrication and Investigation of Nanomaterials for Industrial Applications
  • 160 Accesses

Abstract

Quantum dotsĀ (QD) have been gaining popularity within the field of biomedical diagnostics research because of their unique electrochemiluminescence (ECL) properties. During the past two decades, great efforts have been devoted to the development of ECL luminophores and coreactants. However, the current understanding of ECL generation upon QDs is largely inherited from the theories developed by Bard and coworkers. Two types of charge-transfer mechanisms have been postulated for ECL generation: (i) intraparticle charge-transfer between coreactant radical and QD radical, (ii) interparticle charge-transfer between opposite-charged QD radicals. The manipulation and effective probing of these routes remain a fundamental challenge due to the extremely short lifetime of radicals and their stochastic collisions. In this chapter, we designed QD aerogels as luminophores to elucidate the charge-transfer mechanisms for ECL generation. The CdSe QD aerogel prepared via a versatile water-induced gelation strategy was used for designing novel ECL luminophores. The efficient charge transport and greatly improved ECL efficiency based on the strong electronic coupling between adjacent QDs within the aerogel networks were explored. The selectively enhanced interparticle charge-transfer route for coreactant-based ECL systems was proposed. In addition, the charge-transport-promoted ECL mechanism was further verified by designing CdSe-CdTe mixed QD aerogels, where the interparticle charge-transfer route could be clearly decoupled from the intraparticle charge-transfer route. Finally, we presented an evaluation of energy level alignments and Fermi level of QDs to further verify the interparticle charge-transfer route within the CdSe-CdTe mixed QD aerogels. The study conducted on a fundamental understanding of ECL further supports the utilization of next-generation QD-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V., Building devices from colloidal quantum dots. Science 2016, 353 (6302), aac5523.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  2. Boles, M. A.; Ling, D.; Hyeon, T.; Talapin, D. V., The surface science of nanocrystals. Nat. Mater. 2016, 15 (3), 364.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Owen, J.; Brus, L., Chemical synthesis and luminescence applications of colloidal semiconductor quantum dots. J. Am. Chem. Soc. 2017, 139 (32), 10939ā€“10943.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T., Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5 (9), 763ā€“775.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Zhang, Z.; Sung, J.; Toolan, D. T. W.; Han, S.; Pandya, R.; Weir, M. P.; Xiao, J.; Dowland, S.; Liu, M.; Ryan, A. J.; Jones, R. A. L.; Huang, S.; Rao, A., Ultrafast exciton transport at early times in quantum dot solids. Nat. Mater. 2022, 21 (5), 533ā€“539.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Whitham, K.; Yang, J.; Savitzky, B. H.; Kourkoutis, L. F.; Wise, F.; Hanrath, T., Charge transport and localization in atomically coherent quantum dot solids. Nat. Mater. 2016, 15 (5), 557ā€“563.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Zherebetskyy, D.; Scheele, M.; Zhang, Y. J.; Bronstein, N.; Thompson, C.; Britt, D.; Salmeron, M.; Alivisatos, P.; Wang, L. W., Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 2014, 344 (6190), 1380ā€“1384.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Kagan, C. R.; Murray, C. B., Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 2015, 10 (12), 1013ā€“1026.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Sayevich, V.; Robinson, Z. L.; Kim, Y.; Kozlov, O. V.; Jung, H.; Nakotte, T.; Park, Y. S.; Klimov, V. I., Highly versatile near-infrared emitters based on an atomically defined HgS interlayer embedded into a CdSe/CdS quantum dot. Nat. Nanotechnol. 2021, 16 (6), 673ā€“679.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Kim, T.; Kim, K.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E., Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586 (7829), 385ā€“389.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Meinardi, F.; McDaniel, H.; Carulli, F.; Colombo, A.; Velizhanin, K. A.; Makarov, N. S.; Simonutti, R.; Klimov, V. I.; Brovelli, S., Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat. Nanotechnol. 2015, 10 (10), 878ā€“885.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Chuang, C.-H. M.; Brown, P. R.; Bulović, V.; Bawendi, M. G., Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13 (8), 796ā€“801.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Howes, P. D.; Chandrawati, R.; Stevens, M. M., Colloidal nanoparticles as advanced biological sensors. Science 2014, 346 (6205), 54ā€“62.

    ArticleĀ  Google ScholarĀ 

  14. Bruns, O. T.; Bischof, T. S.; Harris, D. K.; Franke, D.; Shi, Y.; Riedemann, L.; Bartelt, A.; Jaworski, F. B.; Carr, J. A.; Rowlands, C. J.; Wilson, M. W. B.; Chen, O.; Wei, H.; Hwang, G. W.; Montana, D. M.; Coropceanu, I.; Achorn, O. B.; Kloepper, J.; Heeren, J.; So, P. T. C.; Fukumura, D.; Jensen, K. F.; Jain, R. K.; Bawendi, M. G., Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 2017, 1 (4), 0056.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Wu, P.; Hou, X.; Xu, J. J.; Chen, H. Y., Electrochemically generated versus photoexcited luminescence from semiconductor nanomaterials: bridging the valley between two worlds. Chem. Rev. 2014, 114 (21), 11027ā€“11059.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Ding, Z.; Quinn, B. M.; Haram, S. K.; Pell, L. E.; Korgel, B. A.; Bard, A. J., Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 2002, 296 (5571), 1293ā€“1297.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Richter, M. M., Electrochemiluminescence (ECL). Chem. Rev. 2004, 104, 3003āˆ’3036.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Ma, C.; Cao, Y.; Gou, X.; Zhu, J. J., Recent progress in electrochemiluminescence sensing and imaging. Anal. Chem. 2020, 92 (1), 431ā€“454.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. J., M. W., Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev. 2008, 108, 2506ā€“2553.

    Google ScholarĀ 

  20. Hesari, M.; Ding, Z., A grand avenue to Au nanocluster electrochemiluminescence. Acc. Chem. Res. 2017, 50 (2), 218ā€“230.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Zhu, D.; Zhang, Y.; Bao, S.; Wang, N.; Yu, S.; Luo, R.; Ma, J.; Ju, H.; Lei, J., Dual intrareticular oxidation of mixed-ligand metal-organic frameworks for stepwise electrochemiluminescence. J. Am. Chem. Soc. 2021, 143 (8), 3049ā€“3053.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Tan, X.; Zhang, B.; Zou, G., Electrochemistry and electrochemiluminescence of organometal halide perovskite nanocrystals in aqueous medium. J. Am. Chem. Soc. 2017, 139 (25), 8772ā€“8776.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Miao, W. J.; Choi, J. P.; Bard, A. J., Electrogenerated chemiluminescence 69: the tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)32+)/tri-n-propylamine (TPrA) system revisited-a new route involving TPrAĀ· cation radicals. J. Am. Chem. Soc. 2002, 124 (48), 14478ā€“14485.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Dong, J.; Lu, Y.; Xu, Y.; Chen, F.; Yang, J.; Chen, Y.; Feng, J., Direct imaging of single-molecule electrochemical reactions in solution. Nature 2021, 596 (7871), 244ā€“249.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Nag, A.; Kovalenko, M. V.; Lee, J. S.; Liu, W.; Spokoyny, B.; Talapin, D. V., Metal-free inorganic ligands for colloidal nanocrystals: S2āˆ’, HSāˆ’, Se2āˆ’, HSeāˆ’, Te2āˆ’, HTeāˆ’, TeS32āˆ’, OHāˆ’, and NH2āˆ’ as surface ligands. J. Am. Chem. Soc. 2011, 133 (27), 10612ā€“10620.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Fan, X. B.; Yu, S.; Wang, X.; Li, Z. J.; Zhan, F.; Li, J. X.; Gao, Y. J.; Xia, A. D.; Tao, Y.; Li, X. B.; Zhang, L. P.; Tung, C. H.; Wu, L. Z., Susceptible surface sulfide regulates catalytic activity of CdSe quantum dots for hydrogen photogeneration. Adv. Mater. 2019, 31 (7), 1804872.

    ArticleĀ  Google ScholarĀ 

  27. Cao, Z.; Shu, Y.; Qin, H.; Su, B.; Peng, X., Quantum dots with highly efficient, stable, and multicolor electrochemiluminescence. ACS. Cent. Sci. 2020, 6 (7), 1129ā€“1137.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Sayevich, V.; Cai, B.; Benad, A.; Haubold, D.; Sonntag, L.; Gaponik, N.; Lesnyak, V.; Eychmuller, A., 3D assembly of all-inorganic colloidal nanocrystals into gels and aerogels. Angew. Chem. Int. Ed. 2016, 55 (21), 6334ā€“6338.

    ArticleĀ  CASĀ  Google ScholarĀ 

  29. Singh, A.; Lindquist, B. A.; Ong, G. K.; Jadrich, R. B.; Singh, A.; Ha, H.; Ellison, C. J.; Truskett, T. M.; Milliron, D. J., Linking semiconductor nanocrystals into gel networks through all-inorganic bridges. Angew. Chem. Int. Ed. 2015, 54 (49), 14840ā€“14844.

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Geng, X.; Li, S.; Mawella-Vithanage, L.; Ma, T.; Kilani, M.; Wang, B.; Ma, L.; Hewa-Rahinduwage, C. C.; Shafikova, A.; Nikolla, E.; Mao, G.; Brock, S. L.; Zhang, L.; Luo, L., Atomically dispersed Pb ionic sites in PbCdSe quantum dot gels enhance room-temperature NO2 sensing. Nat. Commun. 2021, 12 (1), 4895.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Kovalenko, M. V.; Scheele, M.; Talapin, D. V., Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 2009, 324 (5933), 1417ā€“1120.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Abelson, A.; Qian, C.; Salk, T.; Luan, Z.; Fu, K.; Zheng, J. G.; Wardini, J. L.; Law, M., Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice. Nat. Mater. 2020, 19 (1), 49ā€“55.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Coropceanu, I.; Janke, E. M.; Portner, J.; Haubold, D.; Nguyen, T. D.; Das, A.; Tanner, C. P. N.; Utterback, J. K.; Teitelbaum, S. W.; Hudson, M. H.; Sarma, N. A.; Hinkle, A. M.; Tassone, C. J.; Eychmuller, A.; Limmer, D. T.; de la Cruz, M.; Ginsberg, N. S.; Talapin, D. V., Self-assembly of nanocrystals into strongly electronically coupled all-inorganic supercrystals. Science 2022, 375, 1422ā€“1426.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Mohanan, J. L.; Arachchige, I. U.; Brock, S. L., Porous semiconductor chalcogenide aerogels. Science 2005, 307 (5708), 397ā€“400.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Hewa-Rahinduwage, C. C.; Geng, X.; Silva, K. L.; Niu, X.; Zhang, L.; Brock, S. L.; Luo, L., Reversible electrochemical gelation of metal chalcogenide quantum dots. J. Am. Chem. Soc. 2020, 142 (28), 12207ā€“12215.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Arachchige, I. U.; Brock, S. L., Sol-gel assembly of CdSe nanoparticles to form porous aerogel networks. J. Am. Chem. Soc. 2006, 128 (24), 7964ā€“7971.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Rusch, P.; Zambo, D.; Bigall, N. C., Control over structure and properties in nanocrystal aerogels at the nano-, micro-, and macroscale. Acc. Chem. Res. 2020, 53 (10), 2414ā€“2424.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  38. Sanchez-Paradinas, S.; Dorfs, D.; Friebe, S.; Freytag, A.; Wolf, A.; Bigall, N. C., Aerogels from CdSe/CdS Nanorods with ultra-long exciton lifetimes and high fluorescence quantum yields. Adv. Mater. 2015, 27 (40), 6152ā€“6156.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Peng, H.; Huang, Z.; Deng, H.; Wu, W.; Huang, K.; Li, Z.; Chen, W.; Liu, J., Dual enhancement of gold nanocluster electrochemiluminescence: electrocatalytic excitation and aggregation-induced emission. Angew. Chem. Int. Ed. 2020, 59 (25), 9982ā€“9985.

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Hesari, M.; Swanick, K. N.; Lu, J. S.; Whyte, R.; Wang, S.; Ding, Z., Highly efficient dual-color electrochemiluminescence from BODIPY-capped PbS nanocrystals. J. Am. Chem. Soc. 2015, 137 (35), 11266ā€“11269.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Swanick, K. N.; Ladouceur, S.; Zysman-Colman, E.; Ding, Z. F., Self-enhanced electrochemiluminescence of an iridium(III) complex: mechanistic insight. Angew. Chem. Int. Ed. 2012, 52 (44), 11079ā€“11086.

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (22174087, 52201262), Guangdong Basic and Applied Basic Research Foundation (2021A1515110920), Natural Science Foundation of Shandong Province (ZR2022QE001), Taishan Scholars Program of Shandong Province (tsqn202211042), Fundamental Research Funds of Shandong University (ZY202006), and Jinan Bureau of Science and Technology (2021GXRC127). The author (DNT) wishes to thank Prof. Guizheng Zou, School of Chemistry and Chemical Engineering at Shandong University for UV-Vis, PL, electrochemistry, ECL analysis, and DFT calculation. DNT acknowledges Drs. Guocan Jiang and Anatol Prudnikau, Physical Chemistry at Technische UniversitƤt Dresden, for the synthesis of samples and corresponding characterizations used in this study. DNT acknowledges RenĆ© HĆ¼bner, Institute of Ion Beam Physics and Materials Research at Helmholtz-Zentrum Dresden-Rossendorf, for TEM analysis. The author thanks Prof. Alexander EychmĆ¼ller for fruitful discussion in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, X., Cai, B. (2024). Interparticle Charge Transport Enhances Electrochemiluminescence of Quantum Dots. In: Krishnamoorthy, S., Iniewski, K.(. (eds) Advances in Fabrication and Investigation of Nanomaterials for Industrial Applications . Springer, Cham. https://doi.org/10.1007/978-3-031-42700-8_8

Download citation

Publish with us

Policies and ethics