Skip to main content
Log in

Development of an innovative analytical method for forensic detection of cocaine, antidepressants, and metabolites in postmortem blood using magnetic nanoparticles

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cocaine and antidepressants rank high globally in substance consumption, emphasizing their impact on public health. The determination of these compounds and related substances in biological samples is crucial for forensic toxicology. This study focused on developing an innovative analytical method for the determination of cocaine, antidepressants, and their related metabolites in postmortem blood samples, using unmodified commercial Fe3O4 nanoparticles as a sorbent for dispersive magnetic solid-phase extraction (m-d-SPE), coupled with liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) analysis. An aliquot of 100 µL of whole blood and 5 µL of the internal standard pool were added to 30 mg of nanoparticles. The nanoparticles were separated from the sample using a neodymium magnet inserted into a 3D-printed microtube rack. The liquid was then discarded, followed by desorption with 300 µL of 1/1/1 acetonitrile/methanol/ethyl acetate. The sample was vortexed and separated, and 1.5 µL of the organic supernatant was injected into the LC–MS/MS. The method was acceptably validated and successfully applied to 263 postmortem blood samples. All samples evaluated in this study were positive for at least one substance. The most frequent analyte was benzoylecgonine, followed by cocaine and cocaethylene. The most common antidepressants encountered in the analyzed samples were citalopram and fluoxetine, followed by fluoxetine’s metabolite norfluoxetine. This study describes the first report of this sorbent in postmortem blood analysis, demonstrating satisfactory results for linearity, precision, accuracy, and selectivity for all compounds. The method’s applicability was confirmed, establishing it as an efficient and sustainable alternative to traditional techniques for forensic casework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. United Nations Office on Drugs and Crime (UNODC). World drug report 2022. https://www.unodc.org/unodc/en/data-and-analysis/wdr-2022_booklet-4.html. Accessed 8 Feb 2024.

  2. Castaldelli-Maia JM, Wang YP, Brunoni AR, Faro A, Guimarães RS, Lucchetti G. Burden of disease due to amphetamines, cannabis, cocaine, and opioid use disorders in South America, 1990–2019: a systematic analysis of the Global Burden of Disease Study 2019. Lancet Psychiatry. 2023. https://doi.org/10.1016/S2215-0366(22)00339-X.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ritchie, H, Roser, M. Opioids, cocaine, cannabis and illicit drugs. In: Our World in Data. 2022. https://ourworldindata.org/illicit-drug-use. Accessed 8 Feb 2024.

  4. Statistics, National Health Service Business Services Authority. Data Science. Medicines Used in Mental Health – England – 2015/16 to 2022/23. 2023. https://www.nhsbsa.nhs.uk/statistical-collections/medicines-used-mental-health-england. Accessed 04 Feb 2024.

  5. Indicators, OE. Health at a Glance 2023.

  6. Cheeta S, Schifano F, Oyefeso A, Webb L, Ghodse AH. Antidepressant-related deaths and antidepressant prescriptions in England and Wales, 1998–2000. Br J Psychiatry. 2004. https://doi.org/10.1192/bjp.184.1.41.

    Article  PubMed  Google Scholar 

  7. Bernardes SS, Turini CA, Matsuo T. Perfil das tentativas de suicídio por sobredose intencional de medicamentos atendidas por um Centro de Controle de Intoxicações do Paraná. Brasil Cadernos de Saúde Pública. 2010. https://doi.org/10.1590/S0102-311X2010000700015.

    Article  PubMed  Google Scholar 

  8. Mandour RA. Antidepressants medications and the relative risk of suicide attempt. Toxicol Int. 2012. https://doi.org/10.4103/0971-6580.94517.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wiegand, T, Wax, P, Smith, E, Hart, K, Brent, J. The toxicology investigators consortium case registry—the 2012 experience. J Med Toxicol. 2013. https://doi.org/10.1007/s13181-013-0352-5.

  10. Methling M, Krumbiegel F, Hartwig S, Parr MK, Tsokos M. Toxicological findings in suicides–frequency of antidepressant and antipsychotic substances. Forensic Sci Med Pathol. 2019. https://doi.org/10.1007/s12024-018-0041-4.

    Article  PubMed  Google Scholar 

  11. Sergi M, Bafile E, Compagnone D, Curini R, D’Ascenzo G, Romolo FS. Multiclass analysis of illicit drugs in plasma and oral fluids by LC-MS/MS. Anal Bioanal Chem. 2009. https://doi.org/10.1007/s00216-008-2456-3.

    Article  PubMed  Google Scholar 

  12. Deeb S, McKeown DA, Torrance HJ, Wylie FM, Logan BK, Scott KS. Simultaneous analysis of 22 antiepileptic drugs in postmortem blood, serum and plasma using LC–MS-MS with a focus on their role in forensic cases. J Anal Toxicol. 2014. https://doi.org/10.1093/jat/bku070.

    Article  PubMed  Google Scholar 

  13. Freni F, Bianco S, Vignali C, Groppi A, Moretti M, Osculati AMM, Morini L. A multi-analyte LC–MS/MS method for screening and quantification of 16 synthetic cathinones in hair: application to postmortem cases. Forensic Sci Int. 2019. https://doi.org/10.1016/j.forsciint.2019.02.036.

    Article  PubMed  Google Scholar 

  14. Sousa MA, Gonçalves C, Cunha E, Hajšlová J, Alpendurada MF. Cleanup strategies and advantages in the determination of several therapeutic classes of pharmaceuticals in wastewater samples by SPE–LC–MS/MS. Anal Bioanal Chem. 2011. https://doi.org/10.1007/s00216-010-4297-0.

    Article  PubMed  Google Scholar 

  15. Koesukwiwat U, Lehotay SJ, Miao S, Leepipatpiboon N. High throughput analysis of 150 pesticides in fruits and vegetables using QuEChERS and low-pressure gas chromatography–time-of-flight mass spectrometry. J Chromatogr A. 2010. https://doi.org/10.1016/j.chroma.2010.05.012.

    Article  PubMed  Google Scholar 

  16. Birk L, dos Santos BP, Schwarz PD, Eller S, de Oliveira TF. Green chemistry: Developments and perspectives for sample treatment in forensic methodologies. Wiley Interdiscip Rev: Forensic Sci. 2023. https://doi.org/10.1002/wfs2.1497.

    Article  Google Scholar 

  17. Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int. 2003. https://doi.org/10.1093/jaoac/86.2.412.

    Article  PubMed  Google Scholar 

  18. Asha AB, Narain R. Nanomaterials properties. Polymer Sci Nanotechnol. 2020. https://doi.org/10.1016/B978-0-12-816806-6.00015-7.

    Article  Google Scholar 

  19. Aguilar-Arteaga K, Rodriguez JA, Barrado E. Magnetic solids in analytical chemistry: a review. Anal Chim Acta. 2010. https://doi.org/10.1016/j.aca.2010.06.043.

    Article  PubMed  Google Scholar 

  20. Dąbrowski A. Adsorption—from theory to practice. Adv Coll Interface Sci. 2001. https://doi.org/10.1016/S0001-8686(00)00082-8.

    Article  Google Scholar 

  21. Aghaie ABG, Hadjmohammadi MR. Fe3O4@p-Naphtholbenzein as a novel nano-sorbent for highly effective removal and recovery of Berberine: response surface methodology for optimization of ultrasound assisted dispersive magnetic solid phase extraction. Talanta. 2016. https://doi.org/10.1016/j.talanta.2016.04.034.

    Article  PubMed  Google Scholar 

  22. Vakh C, Alaboud M, Lebedinets S, Korolev D, Postnov V, Moskvin L, Osmolovskaya O, Bulatov A. An automated magnetic dispersive micro-solid phase extraction in a fluidized reactor for the determination of fluoroquinolones in baby food samples. Anal Chim Acta. 2018. https://doi.org/10.1016/j.aca.2017.11.065.

    Article  PubMed  Google Scholar 

  23. Asgharinezhad AA, Ebrahimzadeh H, Mirbabaei F, Mollazadeh N, Shekari N. Dispersive micro-solid-phase extraction of benzodiazepines from biological fluids based on polyaniline/magnetic nanoparticles composite. Anal Chim Acta. 2014. https://doi.org/10.1016/j.aca.2014.06.007.

    Article  PubMed  Google Scholar 

  24. Asgharinezhad AA, Karami S, Ebrahimzadeh H, Shekari N, Jalilian N. Polypyrrole/magnetic nanoparticles composite as an efficient sorbent for dispersive micro-solid-phase extraction of antidepressant drugs from biological fluids. Int J Pharma. 2015. https://doi.org/10.1016/j.ijpharm.2015.08.001.

    Article  Google Scholar 

  25. Franco de Oliveira SCWSE, Zucoloto AD, de Oliveira CDR, Hernandez EMM, Fruchtengarten LVG, de Oliveira TF, Yonamine M. A fast and simple approach for the quantification of 40 illicit drugs, medicines and pesticides in blood and urine samples by UHPLC-MS/MS. J Mass. 2019. https://doi.org/10.1002/jms.4369.

  26. Dos Santos BP, Eller S, Borges GR, de Gouveia GC, Sebben VC, Arbo MD, de Oliveira TF. A multi-analyte LC-MS/MS method for the determination of 57 pharmaceuticals and illicit drugs in plasma, and its application to poisoning cases. J Pharm Biomed Anal. 2023. https://doi.org/10.1016/j.jpba.2022.115082.

    Article  PubMed  Google Scholar 

  27. American Academy of Forensic Science. Standard practices for method validation in forensic toxicology. 2019. https://www.aafs.org/sites/default/files/media/documents/036_Std_e1.pdf. Acessed 4 Feb 2024.

  28. LeBeau MA, Harper CE, Johnson RD, Kahl JH, Reidy L. ANSI/ASB standards 119, 120 and 121 set minimum analytical scope and sensitivity for subdisciplines of forensic toxicology. J Anal Toxicol. 2022. https://doi.org/10.1093/jat/bkab120.

    Article  Google Scholar 

  29. Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC− MS/MS. Anal Chem. 2003. https://doi.org/10.1021/ac020361s.

    Article  PubMed  Google Scholar 

  30. Hegstad S, Hermansson S, Betnér I, Spigset O, Falch BM. Screening and quantitative determination of drugs of abuse in diluted urine by UPLC–MS/MS. J Chromatogr B. 2014. https://doi.org/10.1016/j.jchromb.2013.12.014.

    Article  Google Scholar 

  31. Peters FT, Remane D. Aspects of matrix effects in applications of liquid chromatography–mass spectrometry to forensic and clinical toxicology—a review. Anal Bioanal Chem. 2012. https://doi.org/10.1007/s00216-012-6035-2.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Staeheli SN, Poetzsch M, Kraemer T, Steuer AE. Development and validation of a dynamic range-extended LC-MS/MS multi-analyte method for 11 different postmortem matrices for redistribution studies applying solvent calibration and additional 13 C isotope monitoring. Anal Bioanal Chem. 2015. https://doi.org/10.1007/s00216-015-9023-5.

    Article  PubMed  Google Scholar 

  33. Emaus RA, Borra LC, van der Hulst R, Kloos DP, Rijken DJ, Elsinga PH, Boersma HH, Bosman IJ, Touw DJ. Postmortem redistribution of cocaine and its metabolites, benzoylecgonine and ecgonine methyl ester in humans: important variables that might be influencing the central blood/peripheral blood ratio. Forensic Sci Int. 2023. https://doi.org/10.1016/j.forsciint.2023.111707.

    Article  PubMed  Google Scholar 

  34. Mesquita F, Kral A, Reingold A, Haddad I, Sanches M, Turienzo G, Piconez D, Araujo P, Bueno R. Overdoses among cocaine users in Brazil. Addiction. 2001. https://doi.org/10.1046/j.1360-0443.2001.9612180910.x.

    Article  PubMed  Google Scholar 

  35. Abdalla RR, Madruga CS, Ribeiro M, Pinsky I, Caetano R, Laranjeira R. Prevalence of cocaine use in Brazil: data from the II Brazilian national alcohol and drugs survey (BNADS). Addict Behav. 2014. https://doi.org/10.1016/j.addbeh.2013.10.019.

    Article  PubMed  Google Scholar 

  36. Daldegan-Bueno D, Fischer B. The association between cocaine product use and violence outcomes in Brazil: a comprehensive, systematized review. Aggress Violent Beh. 2023. https://doi.org/10.1016/j.avb.2023.101891.

    Article  Google Scholar 

  37. Jones AW. Forensic drug profile: cocaethylene. J Anal Toxicol. 2019. https://doi.org/10.1093/jat/bkz007.

    Article  PubMed  Google Scholar 

  38. Rounsaville BJ. Treatment of cocaine dependence and depression. Biol Psychiatry. 2004. https://doi.org/10.1016/j.biopsych.2004.05.009.

    Article  PubMed  Google Scholar 

  39. Raby WN, Rubin EA, Garawi F, Cheng W, Mason E, Sanfilippo L, Lord S, Bisaga A, Aharonovich E, Levin F, McDowell D. A randomized, double-blind, placebo-controlled trial of venlafaxine for the treatment of depressed cocaine-dependent patients. Am J Addict. 2014. https://doi.org/10.1111/j.1521-0391.2013.12065.x.

    Article  PubMed  Google Scholar 

  40. Gao Z, Winhusen TJ, Gorenflo M, Ghitza UE, Nunes E, Saxon AJ, Korthuis T, Brady K, Luo SX, Davis PB, Kaelber DC. Potential effect of antidepressants on remission from cocaine use disorder–a nationwide matched retrospective cohort study. Drug Alcohol Depend. 2023. https://doi.org/10.1016/j.drugalcdep.2023.110958.

    Article  PubMed  Google Scholar 

  41. O’Dell LE, George FR, Ritz MC. Antidepressant drugs appear to enhance cocaine-induced toxicity. Exp Clin Psychopharmacol. 2000. https://doi.org/10.1037/1064-1297.8.1.133.

    Article  PubMed  Google Scholar 

  42. Jones AW, Holmgren A. Concentrations of cocaine and benzoylecgonine in femoral blood from cocaine-related deaths compared with venous blood from impaired drivers. J Anal Toxicol. 2014. https://doi.org/10.1093/jat/bkt094.

    Article  PubMed  Google Scholar 

  43. Alvear E, Von BD, Mardones C, Hitschfeld A. Determination of cocaine and its major metabolite benzoylecgonine in several matrices obtained from deceased individuals with presumed drug consumption prior to death. J Forensic Leg Med. 2014. https://doi.org/10.1016/j.jflm.2014.01.003.

  44. Truta L, Castro AL, Tarelho S, Costa P, Sales MG, Teixeira HM. Antidepressants detection and quantification in whole blood samples by GC–MS/MS, for forensic purposes. J Pharm Biomed Anal. 2016. https://doi.org/10.1016/j.jpba.2016.06.027.

    Article  PubMed  Google Scholar 

  45. Al-Asmari AI. Method for the identification and quantification of sixty drugs and their metabolites in postmortem whole blood using liquid chromatography tandem mass spectrometry. Forensic Sci Int. 2020. https://doi.org/10.1016/j.forsciint.2020.110193.

    Article  PubMed  Google Scholar 

  46. Asgharinezhad AA, Karami S, Ebrahimzadeh H, Shekari N, Jalilian N. Polypyrrole/magnetic nanoparticles composite as an efficient sorbent for dispersive micro-solid-phase extraction of antidepressant drugs from biological fluids. Int J Pharm. 2015. https://doi.org/10.1016/j.ijpharm.2015.08.001.

    Article  PubMed  Google Scholar 

  47. Yang F, Zou Y, Ni C, Wang R, Wu M, Liang C, Zhang J, Yuan X, Liu W. Magnetic dispersive solid-phase extraction based on modified magnetic nanoparticles for the detection of cocaine and cocaine metabolites in human urine by high-performance liquid chromatography–mass spectrometry. J Sep Sci. 2017. https://doi.org/10.1002/jssc.201700457.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial support from the Coordination of Improvement of Personal Higher Education, Brazil [CAPES – Finance Code 001] and Foundation for Research Support of the State of Rio Grande do Sul (FAPERGS).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Patricia de Souza Schwarz, Bruno Pereira dos Santos, Letícia Birk, Sarah Eller, Tiago Franco de Oliveira. Methodology: Patricia de Souza Schwarz, Bruno Pereira dos Santos, Letícia Birk, Sarah Eller. Formal analysis and investigation: Patricia de Souza Schwarz, Bruno Pereira dos Santos, Letícia Birk. Writing—original draft preparation: Patricia de Souza Schwarz, Bruno Pereira dos Santos, Letícia Birk. Writing—review and editing: Sarah Eller, Tiago Franco de Oliveira. Funding acquisition: Tiago Franco de Oliveira. Resources: Tiago Franco de Oliveira. Supervision: Tiago Franco de Oliveira.

Corresponding author

Correspondence to Patricia de Souza Schwarz.

Ethics declarations

Ethics approval

This study was approved by the Ethical Committee for Human Studies of the Federal University of Health Sciences of Porto Alegre, Brazil (CAAE 17996819.7.0000.5345).

Source of biological material

The biological material was donated by the General Institute of Expertise of Rio Grande do Sul (IGP-RS).

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza Schwarz, P., dos Santos, B.P., Birk, L. et al. Development of an innovative analytical method for forensic detection of cocaine, antidepressants, and metabolites in postmortem blood using magnetic nanoparticles. Anal Bioanal Chem 416, 3239–3250 (2024). https://doi.org/10.1007/s00216-024-05273-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-024-05273-1

Keywords

Navigation