Skip to main content
Log in

Advances in the application of logic gates in nanozymes

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanozymes are a class of nanomaterials with biocatalytic function and enzyme-like activity, whose advantages include high stability, low cost, and mass production. They can catalyze the substrates of natural enzymes based on specific nanostructures and serve as substitutes for natural enzymes. Their applied research involves a wide range of fields such as biomedicine, environmental governance, agriculture, and food. Molecular logic gates are a new cross-disciplinary discipline, which can simulate the function of silicon circuits on a molecular scale, perform single or multiple input logic operations, and generate logic outputs. A molecular logic gate is a binary operation that converts an input signal into an output signal according to the rules of Boolean logic, generating two signals, a high level, and a low level. The high and low levels represent the “true” and “false” values of the logic gates, and their outputs correspond to “l” and “0” of the molecular logic gates, respectively. The combination of nanozymes and logic gates is a novel and attractive research direction, and the cross-application of the two brings new opportunities and ideas for various fields, such as the construction of efficient biocomputers, intelligent drug delivery systems, and the precise diagnosis of diseases. This review describes the application of logic gates based on nanozymes, which is expected to provide a certain theoretical foundation for researchers’ subsequent studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2019, Elsevier

Fig. 3

Copyright 2020, Elsevier. b Schematic presentation of the input-induced dis-assembly of the “Y” junction structure for the construction of binary logic gates. Reprinted with permission [35]. Copyright 2022, Elsevier. c Schematic description of the MoS2-based AND logic gate for determination of ATP and thrombin. Reprinted with permission [37]. Copyright 2016, American Chemical Society

Fig. 4

Copyright 2022, Elsevier

Fig. 5

Copyright 2018, Elsevier

Fig. 6

Copyright 2020, Royal Society of Chemistry. b Based on the superior peroxidase-like catalytic activity of ZnCo2O4 nanosheets, a simple and highly selective colorimetric method for the detection of PPi and PPase was established, and this assay can be used to construct an IMPLICATION logic gate. Reprinted with permission [50]. Copyright 2021, Elsevier. c Representation of the IMPLICATION logic circuit and truth table. Reprinted with permission [51]. Copyright 2022, Elsevier. d CeO2 with peroxidase-like activity at pH 4.5 (left) and 7.4 (right) for MEL detection. Reprinted with permission [52]. Copyright 2021, Multidisciplinary Digital Publishing Institute

Fig. 7

Copyright 2018, Springer Nature. b The operation of logic gates based on enzymatic reactions. Reprinted with permission [67]. Copyright 2021, Multidisciplinary Digital Publishing Institute. c Colorimetric detection of SCN based on the target-inhibited oxidase-mimetic activity of Pd SP@rGO through poisoning the active sites and schematic diagram of the INHIBIT logic gate. Reprinted with permission [68]. Copyright 2021, Royal Society of Chemistry. d AND logic gate using fluorescence and colorimetric dual-signal detection of TC. Reprinted with permission [69]. Copyright 2023, Elsevier

Fig. 8

Copyright 2021, Royal Society of Chemistry

Fig. 9

Copyright 2016, Royal Society of Chemistry. b Schematic diagram of the cascade logic circuit and unlabeled ratiometric fluorescent sensor based on MnO2 NS for GSH detection. Reprinted with permission [112]. Copyright 2017, American Chemical Society

Similar content being viewed by others

Data availability

All data and materials in this study are included in the published article and its additional file.

References

  1. Liu J, Liu X. Nanozymes and virus detection. J Beijing Inst Technol. 2021;47(1):93–102. https://doi.org/10.11936/bjutxb2019120016.

  2. Zhu JL, Nie W, Wang Q, Li JW, Li H, Wen W, Bao T, Xiong HY, Zhang XH, Wang SF. In situ growth of copper oxide-graphite carbon nitride nanocomposites with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of hydrogen peroxide. Carbon. 2018;129:29–37. https://doi.org/10.1016/j.carbon.2017.11.096.

    Article  CAS  Google Scholar 

  3. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan XY. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577–83. https://doi.org/10.1038/nnano.2007.260.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Pu F, Ren JS, Qu XG. Recent advances in the construction of nanozyme-based logic gates. Biophys Rep. 2020;6:245–55. https://doi.org/10.1007/s41048-020-00124-9.

    Article  CAS  Google Scholar 

  5. Lin XD, Liu YQ, Tao ZH, Gao JT, Deng JK, Yin JJ, Wang S. Nanozyme-based bio-barcode assay for high sensitive and logic-controlled specific detection of multiple DNAs. Biosens Bioelectron. 2017;94:471–7. https://doi.org/10.1016/j.bios.2017.01.008.

    Article  CAS  PubMed  Google Scholar 

  6. Zhao TX. Research on pesticide sensing and molecular logic gate based on nucleic acid coordination polymer nanoparticles[D]. Shandong: Qingdao Agricultural University; 2018.

    Google Scholar 

  7. Gu JM, Wu JX, Gao YH, Wu TH, Li Q, Li AX, Zheng JY, Wen B, Gao F. Electrogenerated chemiluminescence logic gate operations based on molecule-responsive organic microwires. Nanoscale. 2017;9(29):10397–403. https://doi.org/10.1039/c7nr02347b.

    Article  CAS  PubMed  Google Scholar 

  8. Lin YH. Application of biofunctional nanomaterials in modeling enzymes and molecular recognition[D]. University of Chinese Academy of Sciences, 2013.

  9. Gawade PM, Shadish JA, Badeau BA, DeForest CA. Boolean biomaterials: logic-based delivery of site-specifically modified proteins from environmentally responsive hydrogel biomaterials. Adv Mater. 2019;31(33):1970237. https://doi.org/10.1002/adma.201970237.

    Article  Google Scholar 

  10. Pawar S, Duadi H, Fleger Y, Fixler D. Carbon dots-based logic gates. Nanomaterials. 2021;11(1):232. https://doi.org/10.3390/nano11010232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miyamoto T, Razavi S, DeRose R, Inoue T. Synthesizing biomolecule-based Boolean logic gates. ACS Synth Biol. 2013;2(2):72–82. https://doi.org/10.1021/sb3001112.

    Article  CAS  PubMed  Google Scholar 

  12. de Silva PA, Gunaratne NHQ, McCoy CP. A molecular photoionic AND gate based on fluorescent signalling. Nature. 1993;364(6432):42–4. https://doi.org/10.1038/364042a0.

    Article  ADS  Google Scholar 

  13. Liu LJ, Liu PP, Ga L, Ai J. Advances in applications of molecular logic gates. ACS Omega. 2021;6(45):30189–204. https://doi.org/10.1021/acsomega.1c02912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu X, Li YX, Qin ZT, Zhao JW, Zhou YJ, Liu XF. Research and application of nanozyme in disease treatment [J/OL]. Prog Biochem Biophys. 1–22. https://doi.org/10.16476/j.pibb.2022.0577.

  15. Saini N, Choudary R, Chopra DS, Singh D, Singh N. Nanozymes: classification, synthesis and challenges. Appl Nanosci. 2023;13(9):6433–43. https://doi.org/10.1007/s13204-023-02933-z.

    Article  ADS  CAS  Google Scholar 

  16. Zhao MX, Tao Y, Huang W, He Y. Reversible pH switchable oxidase-like activities of MnO2 nanosheets for a visual molecular majority logic gate. Phys Chem Chem Phys. 2018;20(45):28644–8. https://doi.org/10.1039/c8cp05660a.

    Article  CAS  PubMed  Google Scholar 

  17. Katz E, Privman V. Enzyme-based logic systems for information processing. Chem Soc Rev. 2010;39(5):1835–57. https://doi.org/10.1039/b806038j.

    Article  CAS  PubMed  Google Scholar 

  18. Ma DL, He HZ, Chan DSH, Leung CH. Simple DNA-based logic gates responding to biomolecules and metal ions. Chem Sci. 2013;4(9):3366–80. https://doi.org/10.1039/c3sc50924a.

    Article  CAS  Google Scholar 

  19. Stojanovic MN, Stefanovic D, Rudchenko S. Exercises in molecular computing. Acc Chem Res. 2014;47(6):1845–52. https://doi.org/10.1021/ar5000538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Prokup A, Deiters A. Interfacing synthetic DNA logic operations with protein outputs. Angew Chem Int Ed. 2014;126(48):13408–11. https://doi.org/10.1002/anie.201406892.

    Article  ADS  CAS  Google Scholar 

  21. Chen X, Wang YF, Liu Q, Zhang ZZ, Fan CH, He L. Construction of molecular logic gates with a DNA-cleaving deoxyribozyme. Angew Chem Int Ed. 2006;118(11):1791–4. https://doi.org/10.1002/anie.200502511.

    Article  ADS  CAS  Google Scholar 

  22. Lai YH, Sun SC, Chuang MC. Biosensors with built-in biomolecular logic gates for practical applications. Biosensors. 2014;4(3):273–300. https://doi.org/10.3390/bios4030273.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  23. Zhou YL, Kubota LT. Trends in electrochemical sensing. ChemElectroChem. 2020;7(18):3684–5. https://doi.org/10.1002/celc.202001025.

    Article  CAS  Google Scholar 

  24. Ma SH, Zhang QQ, Wu D, Hu YF, Hu DD, Guo ZY, Wang S, Liu Q, Peng JQ. Unique G4-nanowires-mediated switch-modulated electrochemical biosensing for sensitive detection of nickel ion and histidine. J Electroanal Chem. 2019;847: 113144. https://doi.org/10.1016/j.jelechem.2019.05.026.

    Article  CAS  Google Scholar 

  25. Kogikoski S, Paschoalino WJ, Cantelli L, Sliva W, Kubota LT. Electrochemical sensing based on DNA nanotechnology. Trends Anal Chem. 2019;118:597–605. https://doi.org/10.1016/j.trac.2019.06.021.

    Article  CAS  Google Scholar 

  26. Lipka E, Dascalu AE, Messara Y, Tsutsqiridze E, Farkas T, Chankvetadze B. Separation of enantiomers of native amino acids with polysaccharide-based chiral columns in supercritical fluid chromatography. J Chromatogr A. 2019;1585:207–12. https://doi.org/10.1016/j.chroma.2018.11.049.

    Article  CAS  PubMed  Google Scholar 

  27. Kuhn R, Erni F, Bereuter T, Haeusler J. Chiral recognition and enantiomeric resolution based on host-guest complexation with crown ethers in capillary zone electrophoresis. Anal Chem. 1992;64(22):2815–20. https://doi.org/10.1021/ac00046a026.

    Article  CAS  Google Scholar 

  28. Ishigami T, Suga K, Umakoshi H. Chiral recognition of L-amino acids on liposomes prepared with L-phospholipid. ACS Appl Mater Interfaces. 2015;7(38):21065–72. https://doi.org/10.1021/acsami.5b07198.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang GH, Yu Y, Guo ML, Lin BX, Zhang L. A sensitive determination of albumin in urine by molecularly imprinted electrochemical biosensor based on dual-signal strategy. Sens Actuators B Chem. 2019;288:564–70. https://doi.org/10.1016/j.snb.2019.03.042.

    Article  CAS  Google Scholar 

  30. Yi YH, Zhang DP, Ma YZ, Wu XY, Zhu GB. Dual-signal electrochemical enantiospecific recognition system via competitive supramolecular host-guest interactions: the case of phenylalanine. Anal Chem. 2019;91(4):2908–15. https://doi.org/10.1021/acs.analchem.8b05047.

    Article  CAS  PubMed  Google Scholar 

  31. Lu JY, Zhang XX, Huang WT, Zhu QY, Ding XZ, Xia LQ, Luo HQ, Li NB. Boolean logic tree of label-free dual-signal electrochemical aptasensor system for biosensing, three-state logic computation, and keypad lock security operation. Anal Chem. 2017;89(18):9734–41. https://doi.org/10.1021/acs.analchem.7b01498.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang RY, Zhang Y, Deng XL, Sun SG, Li YC. A novel dual-signal electrochemical sensor for bisphenol A determination by coupling nanoporous gold leaf and self-assembled cyclodextrin. Electrochim Acta. 2018;271:417–24. https://doi.org/10.1016/j.electacta.2018.03.113.

    Article  CAS  Google Scholar 

  33. Han Q, Mo FJ, Wu JL, Wang C, Chen M, Fu YZ. Engineering DNAzyme cyclic amplification integrated dual-signal chiral sensing system for specific recognition of histidine enantiomers. Sens Actuators B Chem. 2020;302: 127191. https://doi.org/10.1016/j.snb.2019.127191.

    Article  CAS  Google Scholar 

  34. Ge L, Wang WX, Sun XM, Hou T, Li F. Versatile and programmable DNA logic gates on universal and label-free homogeneous electrochemical platform. Anal Chem. 2016;88(19):9691–8. https://doi.org/10.1021/acs.analchem.6b02584.

    Article  CAS  PubMed  Google Scholar 

  35. Song XM, Yang CY, Yuan R, Xiang Y. Electrochemical label-free biomolecular logic gates regulated by distinct inputs. Biosens Bioelectron. 2022;202: 114000. https://doi.org/10.1016/j.bios.2022.114000.

    Article  CAS  PubMed  Google Scholar 

  36. Ren XX, Hu KY, Qin LX, Wu D, Guo ZY, Wang S, Hu YF. Development of ZnO nanoflowers-assisted DNAzyme-based electrochemical platform for invertase and glucose oxidase-dominated biosensing. Anal Chim Acta. 2022;1232: 340438. https://doi.org/10.1016/j.aca.2022.340438.

    Article  CAS  PubMed  Google Scholar 

  37. Su S, Sun HF, Cao WF, Chao J, Peng HZ, Zuo XL, Yuwen LH, Fan CH, Wang LH. Dual-target electrochemical biosensing based on DNA structural switching on gold nanoparticle-decorated MoS2 nanosheets. ACS Appl Mater Interfaces. 2016;8(11):6826–33. https://doi.org/10.1021/acsami.5b12833.

    Article  CAS  PubMed  Google Scholar 

  38. Fan DQ, Wang J, Wang E, Dong SJ. Propelling DNA computing with materials’ power: recent advancements in innovative DNA logic computing systems and smart bio-applications. Adv Sci. 2020;7(24):2001766. https://doi.org/10.1002/advs.202001766.

    Article  CAS  Google Scholar 

  39. Song W, Li H, Liang H, Qiang WB, Xu DK. Disposable electrochemical aptasensor array by using in situ DNA hybridization inducing silver nanoparticles aggregate for signal amplification. Anal Chem. 2014;86(5):2775–83. https://doi.org/10.1021/ac500011k.

    Article  CAS  PubMed  Google Scholar 

  40. Yu S, Wang YY, Jiang LP, Bi S, Zhu JJ. Cascade amplification-mediated in situ hot-spot assembly for microRNA detection and molecular logic gate operations. Anal Chem. 2018;90(7):4544–51. https://doi.org/10.1021/acs.analchem.7b04930.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang J, Zhang TT, Yang JH. Precious metal nanomaterial-modified electrochemical sensors for nitrite detection. Ionics. 2022;28(5):2041–64. https://doi.org/10.1007/s11581-022-04509-3.

    Article  CAS  Google Scholar 

  42. Fan X, Gao Y, Zhang XC, Li JW, Song RH, Feng X, Song WB. “OR” logic gate multiplexed photoelectrochemical sensor for high-risk human papillomaviruses: “one pot” recombinase polymerase amplification and logic discrimination. Talanta. 2024;266: 125090. https://doi.org/10.1016/j.talanta.2023.125090.

    Article  CAS  PubMed  Google Scholar 

  43. Zhu LP, Yu LY, Ye J, Yan MX, Peng Y, Huang JS, Yang XR. A ratiometric electrochemiluminescence strategy based on two-dimensional nanomaterial-nucleic acid interactions for biosensing and logic gates operation. Biosens Bioelectron. 2021;178: 113022. https://doi.org/10.1016/j.bios.2021.113022.

    Article  CAS  PubMed  Google Scholar 

  44. Cao QF. Construction of novel DNA molecular logic gates and its preliminary application[D]. Hunan: Hunan University; 2016.

    Google Scholar 

  45. Ooi K, Shiraki K, Morishita Y, Nobori T. High-molecular intestinal alkaline phosphatase in chronic liver diseases. J Clin Lab Anal. 2007;21(3):133–9. https://doi.org/10.1002/jcla.20178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xin H, Stone R. Chinese Probe unmasks high-tech adulteration with melamine. Science. 2008;322:1310–1. https://doi.org/10.1126/science.322.5906.1310.

    Article  CAS  PubMed  Google Scholar 

  47. Lorente JA, Valenzuela H, Morote J, Gelabert A. Serum bone alkaline phosphatase levels enhance the clinical utility of prostate specific antigen in the staging of newly diagnosed prostate cancer patients. Eur J Nucl Med Mol Imaging. 1999;26:625–32. https://doi.org/10.1007/s002590050430.

    Article  CAS  Google Scholar 

  48. Wang CH, Gao J, Cao YL, Tan HL. Colorimetric logic gate for alkaline phosphatase based on copper (II)-based metal-organic frameworks with peroxidase-like activity. Anal Chim Acta. 2018;1004:74–81. https://doi.org/10.1016/j.aca.2017.11.078.

    Article  CAS  PubMed  Google Scholar 

  49. Wang XY, Jiang XQ, Wei H. Phosphate-responsive 2D-metal–organic-framework-nanozymes for colorimetric detection of alkaline phosphatase. J Mater Chem B. 2020;8(31):6905–11. https://doi.org/10.1039/c9tb02542a.

    Article  CAS  PubMed  Google Scholar 

  50. Chen J, Wei X, Tang H, Munyemana JC, Guan M, Zhang SS, Qiu HD. Deep eutectic solvents-assisted synthesis of ZnCo2O4 nanosheets as peroxidase-like nanozyme and its application in colorimetric logic gate. Talanta. 2021;222: 121680. https://doi.org/10.1016/j.talanta.2020.121680.

    Article  CAS  PubMed  Google Scholar 

  51. Li MN, Xie YF, Lei LL, Huang H, Li YX. Colorimetric logic gate for protamine and trypsin based on the Bpy-Cu nanozyme with laccase-like activity. Sens Actuators B Chem. 2022;357: 131429. https://doi.org/10.1016/j.snb.2022.131429.

    Article  CAS  Google Scholar 

  52. Chishti B, Ansari ZA, Fouad H, Alothman OY, Hashem M, Ansari SG. Picomolar-level melamine detection via ATP regulated CeO2 nanorods tunable peroxidase-like nanozyme-activity-based colorimetric sensor: logic gate implementation and real sample analysis. Crystals. 2021;11:178. https://doi.org/10.3390/cryst11020178.

    Article  CAS  Google Scholar 

  53. Wang SN, Li Z, Xia MY, Zhao XX, Chen CX, Jiang YY, Ni PJ, Lu YZ. Atomically-precise Au24Ag1 clusterzymes with enhanced peroxidase-like activity for bioanalysis. Chem Res Chin Univ. 2022;39:907–14. https://doi.org/10.1007/s40242-022-2259-7.

    Article  CAS  Google Scholar 

  54. Li Y, Li W, He KY, Li P, Huang Y, Nie Z, Yao SZ. A biomimetic colorimetric logic gate system based on multi-functional peptide-mediated gold nanoparticle assembly. Nanoscale. 2016;8(16):8591–9. https://doi.org/10.1039/c6nr01072e.

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Liu YB, Zhang FM, He X, Ma PY, Huang YB, Tao S, Sun Y, Wang XH, Song DQ. A novel and simple fluorescent sensor based on AgInZnS QDs for the detection of protamine and trypsin and imaging of cells. Sens Actuators B Chem. 2019;294:263–9. https://doi.org/10.1016/j.snb.2019.05.057.

    Article  CAS  Google Scholar 

  56. Guéron M, Leroy JL. The i-motif in nucleic acids. Curr Opin Struct Biol. 2000;10(3):326–31. https://doi.org/10.1016/s0959-440x(00)00091-9.

    Article  PubMed  Google Scholar 

  57. Hurley LH. Secondary DNA structures as molecular targets for cancer therapeutics. Biochem Soc Trans. 2001;29(6):692–6. https://doi.org/10.1042/0300-5127:0290692.

    Article  CAS  PubMed  Google Scholar 

  58. Liu BW, Wu YY, Huang PC, Wu FY. Colorimetric determination of cytosine-rich ssDNA by silver (I)-modulated glucose oxidase-catalyzed growth of gold nanoparticles. Microchim Acta. 2019;186:1–8. https://doi.org/10.1007/s00604-019-3591-6.

    Article  ADS  CAS  Google Scholar 

  59. Brown CA, Jeong KS, Poppenga RH, Puschner B, Miller DM, Ellis AE, Kang KI, Sum S, Cistola AM, Brown SA. Outbreaks of renal failure associated with melamine and cyanuric acid in dogs and cats in 2004 and 2007. J Vet Diagn Investig. 2007;19(5):525–31. https://doi.org/10.1177/104063870701900510.

    Article  Google Scholar 

  60. Zheng L, Yu HL, Yue YL, Wu FJ, He Y. Visual chronometric assay for chromium(III) ions based on the Cu2O nanocube-mediated clock reaction. ACS Appl Mater Interfaces. 2017;9(13):11798–802. https://doi.org/10.1021/acsami.6b16076.

    Article  CAS  PubMed  Google Scholar 

  61. Jalloh MA, Chen JH, Zhen FR, Zhang GP. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress. J Hazard Mater. 2009;162(2–3):1081–5. https://doi.org/10.1016/j.jhazmat.2008.05.146.

    Article  CAS  PubMed  Google Scholar 

  62. Vilela D, Parmar J, Zeng YF, Zhao YL, Sánchez S. Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett. 2016;16(4):2860–6. https://doi.org/10.1021/acs.nanolett.6b00768.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Adhikari S, Ghosh A, Guria S, Sahana A. A through bond energy transfer based ratiometric probe for fluorescent imaging of Sn2+ ions in living cells. RSC Adv. 2016;6(46):39657–62. https://doi.org/10.1039/c6ra05650d.

    Article  ADS  CAS  Google Scholar 

  64. Miller JR, Rowland J, Lechler PJ, Desilets M, Hsu LC. Dispersal of mercury-contaminated sediments by geomorphic processes, Sixmile Canyon, Nevada, USA: implications to site characterization and remediation of fluvial environments. Water Air Soil Pollut. 1996;86:373–88. https://doi.org/10.1007/bf00279168.

    Article  ADS  CAS  Google Scholar 

  65. Du JY, Zhao MX, Huang W, Deng YQ, He Y. Visual colorimetric detection of tin (II) and nitrite using a molybdenum oxide nanomaterial-based three-input logic gate. Anal Bioanal Chem. 2018;410:4519–26. https://doi.org/10.1007/s00216-018-1109-4.

    Article  CAS  PubMed  Google Scholar 

  66. Kumar A, Paul P. Gold nanoparticles for designing of smart colorimetric logic gates operations and scavengers for mercury ions in water. Anal Methods. 2014;6(13):4551–8. https://doi.org/10.1039/c4ay00914b.

    Article  CAS  Google Scholar 

  67. Fu LL, Yu DS, Zou DJ, Qian H, Lin YH. Engineering the stability of nanozyme-catalyzed product for colorimetric logic gate operations. Molecules. 2021;26(21):6494. https://doi.org/10.3390/molecules26216494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kang G, Jing YJ, Liu WD, Zhang CH, Lu LX, Chen CX, Lu YZ. Inhibited oxidase mimetic activity of palladium nanoplates by poisoning the active sites for thiocyanate detection. Analyst. 2021;146(5):1650–5. https://doi.org/10.1039/d1an00002k.

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Rong MC, Huang Y, Zhuang XT, Ma YM, Xie HJ, Wu YF, Niu L. AND logic-gate-based Au@ MnO2 sensing platform for tetracyclines with fluorescent and colorimetric dual-signal readouts. Sens Actuators B Chem. 2023;393: 134204. https://doi.org/10.1016/j.snb.2023.134204.

    Article  CAS  Google Scholar 

  70. Han MX, Huang JY, Niu ZH, Guo Y, Wei ZC, Ding YY, Li CF, Wang P, Wen GW, Li XW. Amorphous hollow manganese silicate nanosphere oxidase mimic for ultrasensitive and high-reliable colorimetric detection of biothiols. Microchim Acta. 2023;190(11):450. https://doi.org/10.1007/s00604-023-06034-0.

    Article  CAS  Google Scholar 

  71. Wu JF, Qin C, Ma JG, Zhang HJ, Chang J, Mao LX, Wu CT. An immunomodulatory bioink with hollow manganese silicate nanospheres for angiogenesis. Appl Mater Today. 2021;23: 101015. https://doi.org/10.1016/j.ampt.2021.101015.

    Article  Google Scholar 

  72. Zhu JX, Tang CJ, Zhuang ZC, Shi CW, Li NR, Zhou L, Mai LQ. Porous and low-crystalline manganese silicate hollow spheres wired by graphene oxide for high-performance lithium and sodium storage. ACS Appl Mater Interfaces. 2017;9(29):24584–90. https://doi.org/10.1021/acsami.7b06088.

    Article  CAS  PubMed  Google Scholar 

  73. Hayat A, Haider W, Raza Y, Marty JL. Colorimetric cholesterol sensor based on peroxidase like activity of zinc oxide nanoparticles incorporated carbon nanotubes. Talanta. 2015;143:157–61. https://doi.org/10.1016/j.talanta.2015.05.051.

    Article  CAS  PubMed  Google Scholar 

  74. Dong YL, Zhang HG, Rahman ZU, Su L, Chen XJ, Hu J, Chen XG. Graphene oxide–Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale. 2012;4(13):3969–76. https://doi.org/10.1039/c2nr12109c.

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Khan MM, Ansari SA, Khan ME, Ansari MO, Min BK, Cho MH. Visible light-induced enhanced photoelectrochemical and photocatalytic studies of gold decorated SnO2 nanostructures. New J Chem. 2015;39(4):2758–66. https://doi.org/10.1039/c4nj02245a.

    Article  CAS  Google Scholar 

  76. Balamurugan C, Arunkumar S, Lee DW. Hierarchical 3D nanostructure of GdInO3 and reduced-graphene-decorated GdInO3 nanocomposite for CO sensing applications. Sens Actuators B Chem. 2016;234:155–66. https://doi.org/10.1016/j.snb.2016.04.043.

    Article  CAS  Google Scholar 

  77. Li J, Lu N, Han SP, Li XM, Wang MQ, Cai MC, Tang ZS, Zhang M. Construction of bio-nano interfaces on nanozymes for bioanalysis. ACS Appl Mater Interfaces. 2021;13(18):21040–50. https://doi.org/10.1021/acsami.1c04241.

    Article  CAS  PubMed  Google Scholar 

  78. Khan ME, Khan MM, Cho MH. Biogenic synthesis of a Ag-graphene nanocomposite with efficient photocatalytic degradation, electrical conductivity and photoelectrochemical performance. New J Chem. 2015;39(10):8121–9. https://doi.org/10.1039/c5nj01320h.

    Article  CAS  Google Scholar 

  79. Nallon EC, Schnee VP, Bright C, Polcha MP, Li QL. Chemical discrimination with an unmodified graphene chemical sensor. ACS Sens. 2016;1(1):26–31. https://doi.org/10.1021/acssensors.5b00029.

    Article  CAS  Google Scholar 

  80. Sharma V, Mobin SM. Cytocompatible peroxidase mimic CuO: graphene nanosphere composite as colorimetric dual sensor for hydrogen peroxide and cholesterol with its logic gate implementation. Sens Actuators B Chem. 2017;240:338–48. https://doi.org/10.1016/j.snb.2016.08.169.

    Article  CAS  Google Scholar 

  81. Liu DD, Zhang FF, Gao M, Zhou JC, Wang YF, Lu YZ. Pt nanoparticle/N-doped graphene nanozymes for colorimetric detection of acetylcholinesterase activity and inhibition. Chin J Anal Chem. 2022;50(12):100177. https://doi.org/10.1016/j.cjac.2022.100177.

  82. Shlyahovsky B, Li Y, Lioubashevski O, Elbaz J, Willner I. Logic gates and antisense DNA devices operating on a translator nucleic acid scaffold. ACS Nano. 2009;3(7):1831–43. https://doi.org/10.1021/nn900085x.

    Article  CAS  PubMed  Google Scholar 

  83. Li T, Wang EK, Dong SJ. Potassium-lead-switched G-quadruplexes: a new class of DNA logic gates. J Am Chem Soc. 2009;131(42):15082–3. https://doi.org/10.1021/ja9051075.

    Article  CAS  PubMed  Google Scholar 

  84. Bi S, Yan YM, Hao SY, Zhang SS. Colorimetric logic gates based on supramolecular DNAzyme structures. Angew Chem Int Ed. 2010;122(26):4540–4. https://doi.org/10.1002/anie.201000840.

    Article  ADS  CAS  Google Scholar 

  85. Zhu JB, Li T, Zhang LB, Dong SJ, Wang EK. G-quadruplex DNAzyme based molecular catalytic beacon for label-free colorimetric logic gates. Biomaterials. 2011;32(30):7318–24. https://doi.org/10.1016/j.biomaterials.2011.06.040.

    Article  CAS  PubMed  Google Scholar 

  86. Li Z, Chen YJ, Ji SF, Tang Y, Chen WX, Li A, Zhao J, Xiong Y, Wu YE, Gong Y, Yao T, Liu W, Zheng LR, Dong JC, Wang Y, Zhuang ZB, Xing W, He CT, Peng C, Cheong WC, Li QH, Zhang ML, Chen Z, Fu NH, Gao X, Zhu W, Wan JW, Zhang J, Gu L, Wei SQ, Hu PJ, Luo J, Li J, Chen C, Peng Q, Duan XF, Huang Y, Chen XM, Wang DS, Li YD. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nat Chem. 2020;12(8):764–72. https://doi.org/10.1038/s41557-020-0473-9.

    Article  CAS  PubMed  Google Scholar 

  87. Huang L, Chen JX, Gan LF, Wang J, Dong SJ. Single-atom nanozymes. Sci Adv. 2019;5(5):eaav5490. https://doi.org/10.1126/sciadv.aav5490.

  88. Qiao BT, Wang AQ, Yang XF, Allard LF, Jiang Z, Cui YT, Liu JY, Li J, Zhang T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem. 2011;3:634–41. https://doi.org/10.1038/nchem.1095.

    Article  CAS  PubMed  Google Scholar 

  89. Jiao L, Yan HY, Wu Y, Gu WL, Zhu CZ, Du D, Lin YH. When nanozymes meet single-atom catalysis. Angew Chem Int Ed. 2020;132(7):2585–96. https://doi.org/10.1002/anie.201905645.

    Article  ADS  CAS  Google Scholar 

  90. Li JM, Yang ZX, Li Y, Zhang GK. Advances in single-atom catalysts: design, synthesis and environmental applications. J Hazard Mater. 2022;429: 128285. https://doi.org/10.1016/j.jhazmat.2022.128285.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang ZY, Zhao XX, Xi SB, Zhang LL, Chen ZX, Zeng ZP, Huang M, Yang HB, Liu B, Pennycook SJ, Chen P. Atomically dispersed cobalt trifunctional electrocatalysts with tailored coordination environment for flexible rechargeable Zn–air battery and self-driven water splitting. Adv Energy Mater. 2020;10(48):2002896. https://doi.org/10.1002/aenm.202002896.

    Article  CAS  Google Scholar 

  92. Li Z, Liu FN, Jiang YY, Ni PJ, Zhang CH, Wang B, Chen CX, Lu YZ. Single-atom Pd catalysts as oxidase mimics with maximum atom utilization for colorimetric analysis. Nano Res. 2022;15(5):4411–20. https://doi.org/10.1007/s12274-021-4029-0.

    Article  ADS  CAS  Google Scholar 

  93. Kang G, Liu WD, Liu FN, Li Z, Dong XY, Chen CX, Lu YZ. Single-atom Pt catalysts as oxidase mimic for p-benzoquinone and α-glucosidase activity detection. Chem Eng J. 2022;449: 137855. https://doi.org/10.1016/j.cej.2022.137855.

    Article  CAS  Google Scholar 

  94. Liu DB, Chen WW, Sun K, Deng K, Zhang W, Wang Z, Jiang XY. Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles. Angew Chem Int Ed. 2011;50(18):4103–7. https://doi.org/10.1002/ange.201008198.

    Article  CAS  Google Scholar 

  95. de la Rosa VR, Zhang ZY, De Geest BG, Hoogenboom R. Colorimetric logic gates based on poly(2-alkyl-2-oxazoline)-coated gold nanoparticles. Adv Funct Mater. 2015;25(17):2511–9. https://doi.org/10.1002/adfm.201404560.

    Article  CAS  Google Scholar 

  96. Song LN, Zhang YH, Li JL, Gao Q, Qi HL, Zhang CX. Non-covalent fluorescent labeling of hairpin DNA probe coupled with hybridization chain reaction for sensitive DNA detection. Appl Spectrosc. 2016;70(4):688–94. https://doi.org/10.1177/0003702816631305.

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Makwana BA, Vyas DJ, Bhatt KD, Jain VK. Selective sensing of copper (II) and leucine using fluorescent turn on - off mechanism from calix[4]resorcinarene modified gold nanoparticles. Sens Actuators B Chem. 2017;240:278–87. https://doi.org/10.1016/j.snb.2016.08.128.

    Article  CAS  Google Scholar 

  98. Xianyu YL, Wang Z, Sun JS, Wang XF, Jiang XY. Colorimetric logic gates through molecular recognition and plasmonic nanoparticles. Small. 2014;10(23):4833–8. https://doi.org/10.1002/smll.201400479.

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Liu ZH, Zhan YH, Y. Bai, Sun JW. AND logic gate application based on colorimetric screening of enzyme activity. Solid State Sci. 2012;14(7):870-873. https://doi.org/10.1016/j.solidstatesciences.2012.03.031.

  100. Hu ZW, Jian JY, Hua YQ, Yang DT, Gao YH, You JY, Wang ZT, Chang YQ, Yuan KS, Bao ZJ, Zhang QX, Li S, Jiang ZJ, Zhou HB. DNA colorimetric logic gate in microfluidic chip based on unmodified gold nanoparticles and molecular recognition. Sens Actuators B Chem. 2018;273:559–65. https://doi.org/10.1016/j.snb.2018.06.073.

    Article  CAS  Google Scholar 

  101. Lu WJ, Gao YF, Jiao Y, Shuang SM, Li CZ, Dong C. Carbon nano-dots as a fluorescent and colorimetric dual-readout probe for the detection of arginine and Cu2+ and its logic gate operation. Nanoscale. 2017;9(32):11545–52. https://doi.org/10.1039/c7nr02336g.

    Article  CAS  PubMed  Google Scholar 

  102. Wang XY, Yu JL, Kang Q, Shen DZ, Li JH, Chen LX. Molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin. Biosens Bioelectron. 2016;77:624–30. https://doi.org/10.1016/j.bios.2015.10.019.

    Article  CAS  PubMed  Google Scholar 

  103. Han Y, Yang WX, Luo XL, He X, Yu Y, Li CH, Tang WZ, Yue TL, Li ZH. Cu2+-triggered carbon dots with synchronous response of dual emission for ultrasensitive ratiometric fluorescence determination of thiophanate-methyl residues. J Agric Food Chem. 2019;67(45):12576–83. https://doi.org/10.1021/acs.jafc.9b04720.

    Article  CAS  PubMed  Google Scholar 

  104. Carter KP, Young AM, Palmer AE. Fluorescent sensors for measuring metal ions in living systems. Chem Rev. 2014;114(8):4564–601. https://doi.org/10.1021/cr400546e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shi JJ, Zhu YF, Zhang XR, Baeyens WRG, García-Campaña AM. Recent developments in nanomaterial optical sensors. TrAC Trends Analyt Chem. 2004;23(5):351–60. https://doi.org/10.1016/S0165-9936(04)00519-9.

    Article  CAS  Google Scholar 

  106. Singh SK, Mishra MK, Singh R. Hypoxia-inducible factor-1α induces CX3CR1 expression and promotes the epithelial to mesenchymal transition (EMT) in ovarian cancer cells. J Ovarian Res. 2019;12:1–10. https://doi.org/10.1186/s13048-019-0517-1.

    Article  Google Scholar 

  107. Liang CX, Zou LJ, Lin X, Zhao BB. Current status of metal nanocluster fluorescent probes combined with novel nanomaterials in nucleic acid detection. Guangxi Med J. 2023;45(4):458-464. https://doi.org/10.11675/j.issn.0253-4304.2023.04.16.

  108. Liu QW, Zhang AM, Wang RH, Zhang Q, Cui DX. A review on metal-and metal oxide-based nanozymes: properties, mechanisms, and applications. Nano Micro Lett. 2021;13:1–53. https://doi.org/10.1007/s40820-021-00674-8.

    Article  ADS  CAS  Google Scholar 

  109. Jiang YT, Guo ZZ, Wang MY, Cui JJ, Miao P. Construction of fluorescence logic gates responding to telomerase and miRNA based on DNA-templated silver nanoclusters and the hybridization chain reaction. Nanoscale. 2022;14(3):612–6. https://doi.org/10.1039/d1nr05622k.

    Article  CAS  PubMed  Google Scholar 

  110. Wang XX, Wu Q, Shan Z, Huang QM. BSA-stabilized Au clusters as peroxidase mimetics for use in xanthine detection. Biosens Bioelectron. 2011;26(8):3614–9. https://doi.org/10.1016/j.bios.2011.02.014.

    Article  CAS  PubMed  Google Scholar 

  111. Deng HH, Wang FF, Liu YH, Peng HP, Li KL, Liu AL, Xia XH, Chen W. Label-free, resettable, and multi-readout logic gates based on chemically induced fluorescence switching of gold nanoclusters. J Mater Chem C. 2016;4(29):7141–7. https://doi.org/10.1039/c6tc02275h.

    Article  CAS  Google Scholar 

  112. Fan DQ, Shang CS, Gu WL, Wang EK, Dong SJ. Introducing ratiometric fluorescence to MnO2 nanosheet-based biosensing: a simple, label-free ratiometric fluorescent sensor programmed by cascade logic circuit for ultrasensitive GSH detection. ACS Appl Mater Interfaces. 2017;9(31):25870–7. https://doi.org/10.1021/acsami.7b07369.

    Article  CAS  PubMed  Google Scholar 

  113. Li M, Xu X, Cai QY. DNA polymerase/NEase-assisted signal amplification coupled with silver nanoclusters for simultaneous detection of multiple microRNAs and molecular logic operations. Sens Actuators B Chem. 2021;327: 128915. https://doi.org/10.1016/j.snb.2020.128915.

    Article  CAS  Google Scholar 

  114. Chen LY, Wang CW, Yuan ZQ, Chang HT. Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem. 2015;87(1):216–29. https://doi.org/10.1021/ac503636j.

    Article  CAS  PubMed  Google Scholar 

  115. Wu YT, Shanmugam C, Tseng WB, Hiseh MM, Tseng WL. A gold nanocluster-based fluorescent probe for simultaneous pH and temperature sensing and its application to cellular imaging and logic gates. Nanoscale. 2016;8(21):11210–6. https://doi.org/10.1039/c6nr02341j.

    Article  ADS  CAS  PubMed  Google Scholar 

  116. Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA, Piacentini M, Nagata S, Melino G. Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ. 2005;12(12):1463–7. https://doi.org/10.1038/sj.cdd.4401724.

    Article  CAS  PubMed  Google Scholar 

  117. Carson DA, Ribeiro JM. Apoptosis and disease. Lancet. 1993;341(8855):1251–4. https://doi.org/10.1016/0140-6736(93)91154-E.

    Article  CAS  PubMed  Google Scholar 

  118. Nicholson DW. ICE/CED3-like proteases as therapeutic targets for the control of inappropriate apoptosis. Nat Biotechnol. 1996;14(3):297–301. https://doi.org/10.1038/nbt0396-297.

    Article  CAS  PubMed  Google Scholar 

  119. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281(5381):1312–6. https://doi.org/10.1126/science.281.5381.1312.

    Article  CAS  PubMed  Google Scholar 

  120. Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol. 2000;1(2):120–30. https://doi.org/10.1038/35040009.

    Article  CAS  PubMed  Google Scholar 

  121. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267(5203):1456–62. https://doi.org/10.1126/science.7878464.

    Article  ADS  CAS  PubMed  Google Scholar 

  122. Shi H, Wang YX, Zheng J, Ning LM, Huang Y, Sheng AZ, Chen TS, Xiang Y, Zhu XL, Li GX. Dual-responsive DNA nanodevice for the available imaging of an apoptotic signaling pathway in situ. ACS Nano. 2019;13(11):12840–50. https://doi.org/10.1021/acsnano.9b05082.

    Article  CAS  PubMed  Google Scholar 

  123. Dwivedi SK, Gupta RC, Srivastava P, Singh P, Koch B, Maiti B, Misra A. Dual fluorophore containing efficient photoinduced electron transfer based molecular probe for selective detection of Cr3+ and PO43– ions through fluorescence “turn-on-off” response in partial aqueous and biological medium: Live cell imaging and logic application. Anal Chem. 2018;90(18):10974–81. https://doi.org/10.1021/acs.analchem.8b02570.

    Article  CAS  PubMed  Google Scholar 

  124. Gambelunghe A, Piccinini R, Ambrogi M, Villarini M, Moretti M, Marchetti C, Abbritti G, Muzi G. Primary DNA damage in chrome-plating workers. Toxicology. 2003;188(2–3):187–95. https://doi.org/10.1016/s0300-483x(03)00088-x.

    Article  CAS  PubMed  Google Scholar 

  125. Chen C, Geng FH, Wang YX, Yu HD, Li L, Yang S, Liu JH, Huang W. Design of a nanoswitch for sequentially multi-species assay based on competitive interaction between DNA-templated fluorescent copper nanoparticles, Cr3+ and pyrophosphate and ALP. Talanta. 2019;205: 120132. https://doi.org/10.1016/j.talanta.2019.120132.

    Article  CAS  PubMed  Google Scholar 

  126. Pawar S, Duadi H, Fleger Y, Fixler D. Design and use of a gold nanoparticle–carbon dot hybrid for a FLIM-based implication nano logic gate. ACS Omega. 2022;7(26):22818–24. https://doi.org/10.1021/acsomega.2c02463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Barnoy EA, Motiei M, Tzror C, Rahimipour S, Popovtzeer R, Fixler D. Biological logic gate using gold nanoparticles and fluorescence lifetime imaging microscopy. ACS Appl Nano Mater. 2019;2(10):6527–36. https://doi.org/10.1021/acsanm.9b01457.

    Article  CAS  Google Scholar 

  128. Chen YF, Zhang Y, Jiao L, Yan HY, Gu WL, Zhu CZ. Advances in the study of carbon-based nanozymes for biosensing applications. Chinese J Anal Chem. 2021;49(6):907–921. https://doi.org/10.19756/j.issn.0253-3820.211258.

  129. Wang MK. Construction of a sensing platform based on fluorescent metal nanoclusters and its application in the detection of biological enzymes[D]. Jilin University. 2021. https://doi.org/10.27162/d.cnki.gjlin.2021.000471.

  130. Sun Y, Xu BL, Pan XT, Wang HY, Wu QY, Li SS, Jiang BY, Liu HY. Carbon-based nanozymes: design, catalytic mechanism, and bioapplication. Coord Chem Rev. 2023;475: 214896. https://doi.org/10.1016/j.ccr.2022.214896.

    Article  CAS  Google Scholar 

  131. Han B, Gao YY, Zhu L, Ma ZC, Zhang XL, Ding H, Zhang YL. In situ integration of SERS sensors for on-chip catalytic reactions. Adv Mater Technol. 2020;5(2):1900963. https://doi.org/10.1002/admt.201900963.

    Article  CAS  Google Scholar 

  132. Adeel M, Bilal M, Rasheed T, Sharma A, Lqbal HMN. Graphene and graphene oxide: functionalization and nano-bio-catalytic system for enzyme immobilization and biotechnological perspective. Inter J Biol Macromol. 2018;120:1430–40. https://doi.org/10.1016/j.ijbiomac.2018.09.144.

    Article  CAS  Google Scholar 

  133. Vineh MB, Saboury AA, Poostchi AA, Rashidi AM, Parivar K. Stability and activity improvement of horseradish peroxidase by covalent immobilization on functionalized reduced graphene oxide and biodegradation of high phenol concentration. Inter J Biol Macromol. 2018;106:1314–22. https://doi.org/10.1016/j.ijbiomac.2017.08.133.

    Article  CAS  Google Scholar 

  134. Gu XY, Gao J, Li XH, Wang Y. Immobilization of papain onto graphene oxide nanosheets. J Nanosci Nanotechnol. 2018;18(5):3543–7. https://doi.org/10.1166/jnn.2018.14695.

    Article  CAS  PubMed  Google Scholar 

  135. Du D, Yang YQ, Lin YH. Graphene-based materials for biosensing and bioimaging. MRS Bull. 2012;37(12):1290–6. https://doi.org/10.1557/mrs.2012.209.

    Article  CAS  Google Scholar 

  136. Bitounis D, Ali-Boucetta H, Hong BH, Min DH, Kostarelos K. Prospects and challenges of graphene in biomedical applications. Adv Mater. 2013;25(16):2258–68. https://doi.org/10.1002/adma.201203700.

    Article  CAS  PubMed  Google Scholar 

  137. Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release. 2014;173:75–88. https://doi.org/10.1016/j.jconrel.2013.10.017.

    Article  CAS  PubMed  Google Scholar 

  138. Bramini M, Alberini G, Colombo E, Chiacchiaretta M, DiFrancesco ML, MayaVetencourt JF, Maragliano L, Benfenati F, Cesca F. Interfacing graphene-based materials with neural cells. Front Syst Neurosci. 2018;12:12. https://doi.org/10.3389/fnsys.2018.00012.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Zhang YY, Wang LH, Dong YF. A label-free and universal platform for the construction of various logic circuits based on graphene oxide and g-quadruplex structure. Anal Sci. 2019;35(2):181–7. https://doi.org/10.2116/analsci.18p349.

    Article  PubMed  Google Scholar 

  140. Li JS, Jia YH, Zheng J, Zhong WW, Shen GL, Yang RH, Tan WH. Aptamer degradation inhibition combined with DNAzyme cascade-based signal amplification for colorimetric detection of proteins. Chem Commun. 2013;49(55):6137–9. https://doi.org/10.1039/c3cc42148a.

    Article  CAS  Google Scholar 

  141. Liu Y, Wei JF, Yan X, Zhao M, Guo CZ, Xu Q. Barium charge transferred doped carbon dots with ultra-high quantum yield photoluminescence of 99.6% and applications. Chin Chem Lett. 2021;32(2):861–5. https://doi.org/10.1016/j.cclet.2020.05.037.

    Article  CAS  Google Scholar 

  142. Ma JF, Zhang LZ, Chen X, Su RG, Shi Q, Zhao SQ, Xu Q, Xu CM. Mass production of highly fluorescent full color carbon dots from the petroleum coke. Chin Chem Lett. 2021;32(4):1532–6. https://doi.org/10.1016/j.cclet.2020.09.053.

    Article  CAS  Google Scholar 

  143. Bai FJ, Wang HW, Lin LY, Zhao LS. A ratiometric fluorescence platform composed of MnO2 nanosheets and nitrogen, chlorine co-doped carbon dots and its logic gate performance for glutathione determination. New J Chem. 2022;46(4):1972–83. https://doi.org/10.1039/d1nj05210a.

    Article  CAS  Google Scholar 

  144. Xiao M, Zhou QQ, Zhang H, Zhou LF, Ma JP, Yi CQ. Logic gate design using multicolor fluorescent carbon nanodots for smartphone-based information extraction. ACS Appl Nano Mater. 2021;4(8):8184–91. https://doi.org/10.1021/acsanm.1c01413.

    Article  CAS  Google Scholar 

  145. Mathew S, Mathew B. Biomass-derived carbon dots as a nanoswitch, logic gate operation, and electrochemical sensor for flavonoids. New J Chem. 2023;47(5):2383–95. https://doi.org/10.1039/d2nj05582a.

    Article  CAS  Google Scholar 

  146. Chen Y, Tang KL, Zhou Q, Wang XN, Wang RY, Zhang ZH. Integrating intelligent logic gate dual-nanozyme cascade fluorescence capillary imprinted sensors for ultrasensitive simultaneous detection of 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol. Anal Chem. 2023;95(49):18139–48. https://doi.org/10.1021/acs.analchem.3c03571.

    Article  CAS  PubMed  Google Scholar 

  147. Qi F, Ren HT, Huang J, Guo L. Preparation, properties and applications of carbon quantum dots. Chem Res. 2020;31(03):270-277. https://doi.org/10.14002/j.hxya.2020.03.013.

  148. Korram J, Dewangan L, Nagwanshi R, Karbhal I, Ghosh KK, Satnami ML. A carbon quantum dot–gold nanoparticle system as a probe for the inhibition and reactivation of acetylcholinesterase: detection of pesticides. New J Chem. 2019;43(18):6874–82. https://doi.org/10.1039/c9nj00555b.

    Article  CAS  Google Scholar 

  149. Yuan YS, Jiang JZ, Liu SP, Yang JD, Zhang H, Yan JJ, Hu XL. Fluorescent carbon dots for glyphosate determination based on fluorescence resonance energy transfer and logic gate operation. Sens Actuators B Chem. 2017;242:545–53. https://doi.org/10.1016/j.snb.2016.11.050.

    Article  CAS  Google Scholar 

  150. Li XY, Wang HQ, Shimizu Y, Pyatenko A, Kawaguchi K, Koshizaki N. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem Commun. 2010;47(3):932–4. https://doi.org/10.1039/c0cc03552a.

    Article  CAS  Google Scholar 

  151. Bano D, Chandra S, Kumar Yadav P, Kumar Singh V, Hasan SH. Off-on detection of glutathione based on the nitrogen, sulfur codoped carbon quantum dots@ MnO2 nano-composite in human lung cancer cells and blood serum. J Photochem Photobiol A Chem. 2020;398: 112558. https://doi.org/10.1016/j.jphotochem.2020.112558.

    Article  CAS  Google Scholar 

  152. Zhang J, Yang H, Pan S, Liu H, Hu XL. A novel “off-on-off” fluorescent-nanoprobe based on B, N co-doped carbon dots and MnO2 nanosheets for sensitive detection of GSH and Ag+. Spectrochim Acta A Mol Biomol Spectrosc. 2021;244: 118831. https://doi.org/10.1016/j.saa.2020.118831.

    Article  CAS  PubMed  Google Scholar 

  153. Liang Y, Xu LX, Tang K, Guan YT, Wang T, Wang H, Yu WW. Nitrogen-doped carbon dots used as an “on-off-on” fluorescent sensor for Fe3+ and glutathione detection. Dyes Pigments. 2020;178: 108358. https://doi.org/10.1016/j.dyepig.2020.108358.

    Article  CAS  Google Scholar 

  154. Xu L, Qian Y, Bao L, Wang W, Deng NM, Zhang L, Wang GL, Fu XC, Fu W. Nitrogen-doped carbon quantum dots for fluorescence sensing, anti-counterfeiting and logic gate operations. New J Chem. 2024;48(1):155–61. https://doi.org/10.1039/d3nj04521h.

    Article  CAS  Google Scholar 

  155. Wu SC, Zhong YL, Zhou YF, Song B, Chu BB, Ji XY, Wu YY, Su YY, He Y. Biomimetic preparation and dual-color bioimaging of fluorescent silicon nanoparticles. J Am Chem Soc. 2015;137(46):14726–32. https://doi.org/10.1021/jacs.5b08685.

    Article  CAS  PubMed  Google Scholar 

  156. Ahire JH, Chambrier I, Mueller A, Bao YP, Chao YM. Synthesis of d-mannose capped silicon nanoparticles and their interactions with MCF-7 human breast cancerous cells. ACS Appl Mater Interfaces. 2013;5(15):7384–91. https://doi.org/10.1021/am4017126.

    Article  CAS  PubMed  Google Scholar 

  157. Li Q, He Y, Chang J, Wang L, Chen HZ, Tan YW, Wang HY, Shao ZZ. Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature. J Am Chem Soc. 2013;135(40):14924–7. https://doi.org/10.1021/ja407508v.

    Article  CAS  PubMed  Google Scholar 

  158. Lin JT, Wang QM. Role of novel silicon nanoparticles in luminescence detection of a family of antibiotics. RSC Adv. 2015;5(35):27458–63. https://doi.org/10.1039/c5ra01769f.

    Article  ADS  CAS  Google Scholar 

  159. Ma SD, Chen YL, Feng J, Liu JJ, Zuo XW, Chen XG. One-step synthesis of water-dispersible and biocompatible silicon nanoparticles for selective heparin sensing and cell imaging. Anal Chem. 2016;88(21):10474–81. https://doi.org/10.1021/acs.analchem.6b02448.

    Article  CAS  PubMed  Google Scholar 

  160. Zhu BY, Ren GJ, Tang MY, Chai F, Qu FY, Wang CG, Su ZM. Fluorescent silicon nanoparticles for sensing Hg2+ and Ag+ as well visualization of latent fingerprints. Dyes Pigments. 2018;149:686–95. https://doi.org/10.1016/j.dyegip.2017.11.041.

    Article  CAS  Google Scholar 

  161. Su YY, Ji XY, He Y. Water-dispersible fluorescent silicon nanoparticles and their optical applications. Adv Mater. 2016;28(47):10567–74. https://doi.org/10.1002/adma.201601173.

    Article  CAS  PubMed  Google Scholar 

  162. Zhang SJ, Liu RH, Cui QL, Yang Y, Cao Q, Xu WQ, Li LD. Ultrabright fluorescent silica nanoparticles embedded with conjugated oligomers and their application in latent fingerprint detection. ACS Appl Mater Interfaces. 2017;9(50):44134–45. https://doi.org/10.1021/acsami.7b15612.

    Article  CAS  PubMed  Google Scholar 

  163. Luo L, Song Y, Zhu CZ, Fu SF, Shi QR, Sun YM, Jia BZ, Du D, Xu ZL, Lin YH. Fluorescent silicon nanoparticles-based ratiometric fluorescence immunoassay for sensitive detection of ethyl carbamate in red wine. Sens Actuators B Chem. 2018;255:2742–9. https://doi.org/10.1016/j.snb.2017.09.088.

    Article  CAS  Google Scholar 

  164. Xu N, Yuan YQ, Yin JH, Wang X, Meng L. One-pot hydrothermal synthesis of luminescent silicon-based nanoparticles for highly specific detection of oxytetracycline via ratiometric fluorescent strategy. RSC Adv. 2017;7(76):48429–36. https://doi.org/10.1039/c7ra09338a.

    Article  ADS  CAS  Google Scholar 

  165. Yuan XC, Sun Y, Zhao PF, Zhao LS, Xiong ZL. Redox-induced target-dependent ratiometric fluorescence sensing strategy and logic gate operation for detection of α-glucosidase activity and its inhibitor. Dalton Trans. 2021;50(27):9426–37. https://doi.org/10.1039/d1dt01299a.

    Article  CAS  PubMed  Google Scholar 

  166. Yuan XC, Zhao HQ, Bai FJ, Zhao PF, Zhao LS, Xiong ZL. Fluorescence and scattering based dual-optical signals ratiometric sensing and logic gate device for acetylcholinesterase activity assay. Microchem J. 2021;170: 106768. https://doi.org/10.1016/j.microc.2021.106768.

    Article  CAS  Google Scholar 

  167. Zhang ZL, Long DY, Yang M, Chang XJ, Xian H, Chen J, Peng HJ, Peng JD. A ratiometric fluorescence sensor for ascorbic acid determination based on an AND-NAND logic pair. Microchim Acta. 2021;188:1–9. https://doi.org/10.1007/s00604-021-05043-1.

    Article  ADS  CAS  Google Scholar 

  168. Tang X, Zeng XY, Liu HM, Yang YL, Zhou HB, Cai HH. A nanohybrid composed of MoS2 quantum dots and MnO2 nanosheets with dual-emission and peroxidase mimicking properties for use in ratiometric fluorometric detection and cellular imaging of glutathione. Microchim Acta. 2019;186:1–12. https://doi.org/10.1007/s00604-019-3660-x.

    Article  ADS  CAS  Google Scholar 

  169. Yang Q, Li JH, Wang XY, Peng HL, Xiong H, Chen LX. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis. Biosens Bioelectron. 2018;112:54–71. https://doi.org/10.1016/j.bios.2018.04.028.

    Article  CAS  PubMed  Google Scholar 

  170. Li JH, Fu JQ, Yang Q, Wang LY, Wang XY, Chen LX. Thermosensitive molecularly imprinted core-shell CdTe quantum dots as a ratiometric fluorescence nanosensor for phycocyanin recognition and detection in seawater. Analyst. 2018;143(15):3570–8. https://doi.org/10.1039/c8an00811f.

    Article  ADS  CAS  PubMed  Google Scholar 

  171. Liu SG, Mo S, Han L, Li N, Fan YZ, Li NB, Luo HQ. Oxidation etching induced dual-signal response of carbon dots/silver nanoparticles system for ratiometric optical sensing of H2O2 and H2O2-related bioanalysis. Anal Chim Acta. 2019;1055:81–9. https://doi.org/10.1016/j.aca.2018.12.015.

    Article  CAS  PubMed  Google Scholar 

  172. Bigdeli A, Ghasemi F, Abbasi-Moayed S, Shahrajabian M, Fahimi-Kashani N, Jafarinejad S, Amin Farahmand Nejad M, Reza Hormozi-Nezhad M. Ratiometric fluorescent nanoprobes for visual detection: design principles and recent advances-a review. Anal Chim Acta. 2019;1079:30–58. https://doi.org/10.1016/j.aca.2019.06.035.

  173. Liu LJ, Ga L, Ai J. Ratiometric fluorescence sensing with logical operation: theory, design and applications. Biosens Bioelectron. 2022;213: 114456. https://doi.org/10.1016/j.bios.2022.114456.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No.21864020, 82160652), the Natural Science Foundation of Inner Mongolia (Grant No. and 2019MS02014, 2018MS02012), ‘‘Young Science and Technology Talents Program’’ (Leading Person) in Inner Mongolia Autonomous Region Colleges and Universities (Grant No. NJYT-19-A04), and the Fundamental Research Funds for the Inner Mongolia Normal University, China (Grant No. 2022JBZD013).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Xiangru Hou and Lu Ga. Methodology: Y.W. Software: Jun Ai. Validation: Xiangru Hou and Lu Ga. Formal analysis: Xiangru Hou and Lu Ga. Investigation: Jun Ai. Resources: Xiangru Hou and Lu Ga. Data curation: Xin Zhang. Writing—original draft preparation: Xiangru Hou. Writing—review and editing: Xin Zhang. Visualization: Jun Ai. Supervision: Xin Zhang. Project administration: Xin Zhang. Funding acquisition: Jun Ai. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Xin Zhang or Jun Ai.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

All authors agree to publish.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Nanozymes with guest editors Vipul Bansal, Sudipta Seal, and Hui Wei.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 53 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, X., Ga, L., Zhang, X. et al. Advances in the application of logic gates in nanozymes. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05240-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05240-w

Keywords

Navigation