Skip to main content
Log in

Reliable biological and multi-omics research through biometrology

  • Feature Article
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Metrology is the science of measurement and its applications, whereas biometrology is the science of biological measurement and its applications. Biometrology aims to achieve accuracy and consistency of biological measurements by focusing on the development of metrological traceability, biological reference measurement procedures, and reference materials. Irreproducibility of biological and multi-omics research results from different laboratories, platforms, and analysis methods is hampering the translation of research into clinical uses and can often be attributed to the lack of biologists’ attention to the general principles of metrology. In this paper, the progresses of biometrology including metrology on nucleic acid, protein, and cell measurements and its impacts on the improvement of reliability and comparability in biological research are reviewed. Challenges in obtaining more reliable biological and multi-omics measurements due to the lack of primary reference measurement procedures and new standards for biological reference materials faced by biometrology are discussed. In the future, in addition to establishing reliable reference measurement procedures, developing reference materials from single or multiple parameters to multi-omics scale should be emphasized. Thinking in way of biometrology is warranted for facilitating the translation of high-throughput omics research into clinical practices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. White R. The meaning of measurement in metrology. Accredit Qual Assur. 2011;16(1):31–41. https://doi.org/10.1007/s00769-010-0698-1.

    Article  Google Scholar 

  2. Pendrill L. Metrology: time for a new look at the physics of traceable measurement? Europhys News. 2006;37(1):22–5. https://doi.org/10.1051/epn:2006104.

    Article  ADS  Google Scholar 

  3. Better research through metrology. Nat Methods. 2018;15 (6):395. https://doi.org/10.1038/s41592-018-0035-x.

  4. BIPM Metrology. https://www.bipm.org/en/worldwide-metrology/. Accessed 2023–04–29.

  5. Page C, Vigoureux P. The International Bureau of Weights and Measures 1875–1975. NASA STI/Recon Technical Report N, 1975, 75:33282.

  6. Hillger DW, Sokol LF. The modern metric system on postage stamps. J Chem Educ. 1988;65(5):384. https://doi.org/10.1021/ed065p384.

    Article  CAS  Google Scholar 

  7. BIPM Brief history of the SI. http://www.bipm.org/en/measurement-units/history-si/. Accessed 2023–04–29.

  8. Mills IM, Mohr PJ, Quinn TJ, Taylor BN, Williams ER. Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing CIPM recommendation 1 (CI-2005). Metrologia. 2006;43(3):227. https://doi.org/10.1088/0026-1394/43/3/006.

    Article  ADS  Google Scholar 

  9. Taylor BN, Thompson A. The international system of units (SI). 2008 Edition edn. US Department of Commerce, Technology Administration, National Institute of Standards and Technology, U.S. Department of Commerce; 2001.

  10. Costa Monteiro E, Summers R. Metrological requirements for biomedical device assessment and their ethical implications. Measur Sens. 2022;24:100574. https://doi.org/10.1016/j.measen.2022.100574.

    Article  Google Scholar 

  11. Ferrero A, Scotti V. Measurement uncertainty. In: Forensic metrology: an introduction to the fundamentals of metrology for judges, lawyers and forensic scientists. 2022. Springer Nature, pp 57–94.

  12. BIPM 2008. Evaluation of measurement data - guide to the expression of uncertainty in measurement. https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf. Accessed 2023–04–29.

  13. Huang H. A propensity-based framework for measurement uncertainty analysis. Measurement. 2023;213:112693. https://doi.org/10.1016/j.measurement.2023.112693.

    Article  Google Scholar 

  14. Kimothi SK. The uncertainty of measurements: physical and chemical metrology: impact and analysis. 2001. ASQ Quality Press, pp 58–60.

  15. Plant AL, Hanisch RJ. Reproducibility in science: a metrology perspective. Harv Data Sci Rev. 2020;2(4). https://doi.org/10.1162/99608f92.eb6ddee4.

  16. Booth CM, Karim S, Mackillop WJ. Real-world data: towards achieving the achievable in cancer care. Nat Rev Clin Oncol. 2019;16(5):312–25. https://doi.org/10.1038/s41571-019-0167-7.

    Article  PubMed  Google Scholar 

  17. Keselman HJ, Algina J, Kowalchuk RK. The analysis of repeated measures designs: a review. Br J Math Stat Psychol. 2001;54(Pt 1):1–20. https://doi.org/10.1348/000711001159357.

    Article  CAS  PubMed  Google Scholar 

  18. White GH. Metrological traceability in clinical biochemistry. Ann Clin Biochem. 2011;48(5):393–409. https://doi.org/10.1258/acb.2011.011079.

    Article  CAS  PubMed  Google Scholar 

  19. OIML. International vocabulary of metrology – basic and general concepts and associated terms (VIM) 3rd edition. 2006. 8–14.

  20. Flathagen J, Olsen LE. A study of computer interfaces for soldier systems-(a look at Ethernet, FireWire and USB). 2005. http://hdl.handle.net/20.500.12242/1880. Accessed 2023–07–06.

  21. Bunk DM. Design considerations for proteomic reference materials. Proteomics. 2010;10(23):4220–5. https://doi.org/10.1002/pmic.201000242.

    Article  CAS  PubMed  Google Scholar 

  22. EN ISO 17511: 2003, In vitro diagnostic medical devices-measurement of quantities in biological samples-metrological traceability of values assigned to calibrators and control materials (ISO/FDIS 17511:2002).

  23. Ellison SLR, Holden MJ, Woolford A, Haynes RJ, Salit ML, Burns M, et al. CCQM-K61: Quantitation of a linearised plasmid DNA, based on a matched standard in a matrix of non-target DNA. Metrologia. 2009;46(1A):08021. https://doi.org/10.1088/0026-1394/46/1A/08021.

    Article  ADS  Google Scholar 

  24. Corbisier P, Vincent S, Schimmel H, Kortekaas A-M, Trapmann S, Burns M, et al. CCQM-K86/P113.1: relative quantification of genomic DNA fragments extracted from a biological tissue. Metrologia. 2012;49(1A):08002. https://doi.org/10.1088/0026-1394/49/1A/08002.

    Article  ADS  Google Scholar 

  25. Yang I, Kim S-K, Burke DG, Griffiths K, Kassir Z, Emslie KR, et al. An international comparability study on quantification of total methyl cytosine content. Anal Biochem. 2009;384(2):288–95. https://doi.org/10.1016/j.ab.2008.09.036.

    Article  CAS  PubMed  Google Scholar 

  26. Devonshire AS, Sanders R, Whale AS, Nixon GJ, Cowen S, Ellison SL, et al. An international comparability study on quantification of mRNA gene expression ratios: CCQM-P103. 1. Biomol Detect Quantif. 2016;8:15–28. https://doi.org/10.1016/j.bdq.2016.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaarls R. The Consultative Committee for Metrology in Chemistry and Biology-CCQM. J Chem Metrol. 2018;12(1). https://doi.org/10.25135/jcm.11.17.12.060.

  28. Milavec M, Cleveland MH, Bae Y-K, Wielgosz RI, Vonsky M, Huggett JF. Metrological framework to support accurate, reliable, and reproducible nucleic acid measurements. Anal Bioanal Chem. 2022;414(2):791–806. https://doi.org/10.1007/s00216-021-03712-x.

    Article  CAS  PubMed  Google Scholar 

  29. Dong L, Meng Y, Wang J, Liu Y. Evaluation of droplet digital PCR for characterizing plasmid reference material used for quantifying ammonia oxidizers and denitrifiers. Anal Bioanal Chem. 2014;406(6):1701–12. https://doi.org/10.1007/s00216-013-7546-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O’Connor G, Dawson C, Woolford A, Webb KS, Catterick T. Quantitation of oligonucleotides by phosphodiesterase digestion followed by isotope dilution mass spectrometry: proof of concept. Anal Chem. 2002;74(15):3670–6. https://doi.org/10.1021/ac0255375.

    Article  CAS  PubMed  Google Scholar 

  31. Holden MJ, Rabb SA, Tewari YB, Winchester MR. Traceable phosphorus measurements by ICP-OES and HPLC for the quantitation of DNA. Anal Chem. 2007;79(4):1536–41. https://doi.org/10.1021/ac061463b.

    Article  CAS  PubMed  Google Scholar 

  32. Camp CL, Sharp BL, Reid HJ, Entwisle J, Goenaga-Infante H. Analysis of mono-phosphate nucleotides as a potential method for quantification of DNA using high performance liquid chromatography–inductively coupled plasma-mass spectrometry. Anal Bioanal Chem. 2012;402(1):367–72. https://doi.org/10.1007/s00216-011-5347-y.

    Article  CAS  PubMed  Google Scholar 

  33. Peng M, Fang Z, Na N, Ouyang J. A versatile single-molecule counting-based platform by generation of fluorescent silver nanoclusters for sensitive detection of multiple nucleic acids. Nanoscale. 2019;11(35):16606–13. https://doi.org/10.1039/C9NR04608A.

    Article  CAS  PubMed  Google Scholar 

  34. Liu W, Chen D, Pian H, Su F, Wang H, Zhang P, et al. One-by-one single-molecule counting method for digital quantification of SARS-CoV-2 RNA. Nano Today. 2022;47:101664. https://doi.org/10.1016/j.nantod.2022.101664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bhat S, Herrmann J, Armishaw P, Corbisier P, Emslie KR. Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number. Anal Bioanal Chem. 2009;394(2):457–67. https://doi.org/10.1007/s00216-009-2729-5.

    Article  CAS  PubMed  Google Scholar 

  36. Bogožalec Košir A, Demšar T, Štebih D, Žel J, Milavec M. Digital PCR as an effective tool for GMO quantification in complex matrices. Food Chem. 2019;294:73–8. https://doi.org/10.1016/j.foodchem.2019.05.029.

    Article  CAS  PubMed  Google Scholar 

  37. Dong L, Sui Z, Wang J, Tang VH, Chum WW, Lee F, et al. Final report for CCQM-K86. b relative quantification of Bt63 in GM rice matrix sample. Metrologia. 2018;55(1A):08017. https://doi.org/10.1088/0026-1394/55/1A/08017.

    Article  ADS  Google Scholar 

  38. Mester Z, Corbisier P, Ellison SL, Gao Y, Niu C, Tang V, et al. Final report of CCQM-K86. c. Relative quantification of genomic DNA fragments extracted from a biological tissue. Metrologia. 2020;57(1A):08004. https://doi.org/10.1088/0026-1394/57/1A/08004.

    Article  Google Scholar 

  39. National Measurement Institutes demonstrate high accuracy reference measurement system for SARS-CoV-2 testing. 2020. https://www.bipm.org/en/-/2020-nmi-covid. Accessed 2023–04–29.

  40. Fiala C, Kulasingam V, Diamandis E. Circulating tumor DNA for early cancer detection. J Appl Lab Med. 2018;3(2):300–13. https://doi.org/10.1373/jalm.2018.026393.

    Article  CAS  PubMed  Google Scholar 

  41. Deveson IW, Gong B, Lai K, LoCoco JS, Richmond TA, Schageman J, et al. Evaluating the analytical validity of circulating tumor DNA sequencing assays for precision oncology. Nat Biotechnol. 2021;39(9):1115–28. https://doi.org/10.1038/s41587-021-00857-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, et al. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat Biotechnol. 2014;32(3):246–51. https://doi.org/10.1038/nbt.2835.

    Article  CAS  PubMed  Google Scholar 

  43. Wenger AM, Peluso P, Rowell WJ, Chang P-C, Hall RJ, Concepcion GT, et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol. 2019;37(10):1155–62. https://doi.org/10.1038/s41587-019-0217-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shumate A, Zimin AV, Sherman RM, Puiu D, Wagner JM, Olson ND, et al. Assembly and annotation of an Ashkenazi human reference genome. Genome Biol. 2020;21(1):1–18. https://doi.org/10.1186/s13059-020-02047-7.

    Article  CAS  Google Scholar 

  45. Wang Y-C, Olson ND, Deikus G, Shah H, Wenger AM, Trow J, et al. High-coverage, long-read sequencing of Han Chinese trio reference samples. Sci Data. 2019;6(1):1–5. https://doi.org/10.1038/s41597-019-0098-2.

    Article  CAS  Google Scholar 

  46. Parikh H, Mohiyuddin M, Lam HY, Iyer H, Chen D, Pratt M, et al. svclassify: a method to establish benchmark structural variant calls. BMC Genomics. 2016;17(1):1–16. https://doi.org/10.1186/s12864-016-2366-2.

    Article  Google Scholar 

  47. Blackburn J, Wong T, Madala BS, Barker C, Hardwick SA, Reis ALM, et al. Use of synthetic DNA spike-in controls (sequins) for human genome sequencing. Nat Protoc. 2019;14(7):2119–51. https://doi.org/10.1038/s41596-019-0175-1.

    Article  CAS  PubMed  Google Scholar 

  48. Hardwick SA, Chen WY, Wong T, Deveson IW, Blackburn J, Andersen SB, et al. Spliced synthetic genes as internal controls in RNA sequencing experiments. Nat Methods. 2016;13(9):792–8. https://doi.org/10.1038/nmeth.3958.

    Article  CAS  PubMed  Google Scholar 

  49. Ren L, Duan X, Dong L, Zhang R, Yang J, Gao Y, et al. Quartet DNA reference materials and datasets for comprehensively evaluating germline variant calling performance. Genome Biol. 2023;24(1):270. https://doi.org/10.1186/s13059-023-03109-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu Y, Hou W, Liu Y, Wang H, Dong L, Mai Y, et al. Quartet RNA reference materials improve the quality of transcriptomic data through ratio-based profiling. Nat Biotechnol. 2023. https://doi.org/10.1038/s41587-023-01867-9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tian S, Zhan D, Yu Y, Wang Y, Liu M, Tan S, et al. Quartet protein reference materials and datasets for multi-platform assessment of label-free proteomics. Genome Biol. 2023;24(1):202. https://doi.org/10.1186/s13059-023-03048-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang N, Zhang P, Chen Q, Zhou K, Liu Y, Wang H, et al. Quartet metabolite reference materials for assessing inter-laboratory reliability and data integration of metabolomic profiling. bioRxiv. 2022:2022.11. 01.514762. https://doi.org/10.1101/2022.11.01.514762.

  53. Jia P, Dong L, Yang X, Wang B, Bush SJ, Wang T, et al. Haplotype-resolved assemblies and variant benchmark of a Chinese Quartet. Genome Biol. 2023;24(1):277. https://doi.org/10.1186/s13059-023-03116-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. CCQM Working Group on Protein Analysis (PAWG) strategy document. https://www.bipm.org/en/committees/cc/ccqm/wg/ccqm-pawg. accessed 2023–06–28.

  55. Josephs RD, Martos G, Li M, Wu L, Melanson JE, Quaglia M, et al. Establishment of measurement traceability for peptide and protein quantification through rigorous purity assessment—a review. Metrologia. 2019;56(4):044006. https://doi.org/10.1088/1681-7575/ab27e5.

    Article  ADS  CAS  Google Scholar 

  56. Li M, Josephs RD, Daireaux A, Choteau T, Westwood S, Wielgosz RI, et al. Identification and accurate quantification of structurally related peptide impurities in synthetic human C-peptide by liquid chromatography–high resolution mass spectrometry. Anal Bioanal Chem. 2018;410:5059–70. https://doi.org/10.1007/s00216-018-1155-y.

    Article  CAS  PubMed  Google Scholar 

  57. Li M, Josephs RD, Daireaux A, Choteau T, Westwood S, Martos G, et al. Structurally related peptide impurity identification and accurate quantification for synthetic oxytocin by liquid chromatography–high-resolution mass spectrometry. Anal Bioanal Chem. 2021;413:1861–70. https://doi.org/10.1007/s00216-021-03154-5.

    Article  CAS  PubMed  Google Scholar 

  58. Melanson JE, Thibeault M-P, Stocks BB, Leek DM, McRae G, Meija J. Purity assignment for peptide certified reference materials by combining qNMR and LC-MS/MS amino acid analysis results: application to angiotensin II. Anal Bioanal Chem. 2018;410:6719–31. https://doi.org/10.1007/s00216-018-1272-7.

    Article  CAS  PubMed  Google Scholar 

  59. Bhatia D, Bourven I, Simon S, Bhatia F, van Hullebuschet E, Rossano S, et al. Fluorescence detection to determine proteins and humic-like substances fingerprints of exopolymeric substances (EPS) from biological sludges performed by size exclusion chromatography (SEC). Bioresour Technol. 2013;131:159–65. https://doi.org/10.1016/j.biortech.2012.12.078.

    Article  CAS  PubMed  Google Scholar 

  60. Luo Y, Wu L, Yang B, Jin Y, Zheng K, He Z. A novel potential primary method for quantification of enantiomers by high performance liquid chromatography-circular dichroism. Sci Rep. 2018;8(1):7390. https://doi.org/10.1038/s41598-018-25682-4.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Josephs RD, Sèvres F, Li M, Song D, Daireaux A, Choteau T, et al. CCQM-P55.2: pilot study on peptide purity - synthetic human C-peptide. Metrologia. 2017;54(1):08011. https://doi.org/10.1088/0026-1394/54/1A/08011.

    Article  ADS  Google Scholar 

  62. Josephs R, Li M, Daireaux A, Choteau T, Martos G, Westwood S, et al. Pilot study on peptide purity—synthetic oxytocin. Metrologia. 2020;57(1A):08016. https://doi.org/10.1088/0026-1394/57/1A/08016.

    Article  Google Scholar 

  63. Josephs R, Liu Q, Martos G, Bedu M, Daireaux A, Choteau T, et al. Pilot study on peptide purity-glycated hexapeptide of HbA1c. Metrologia. 2022;59(1A):08007. https://doi.org/10.1088/0026-1394/59/1A/08007.

    Article  CAS  Google Scholar 

  64. Jeong J-S, Yim Y-H, Liu Q, Yong S, Liu H, Beltrão P, et al. Key comparison study on protein quantification: purity-assessed recombinant protein contents in buffer solution using insulin analogue. Metrologia. 2021;58(1A):08007. https://doi.org/10.1088/0026-1394/58/1A/08007.

    Article  Google Scholar 

  65. Mi W, Josephs R, Melanson J, Dai X, Wang Y, Zhai R, et al. PAWG pilot study on quantification of SARS-CoV-2 monoclonal antibody-part 1. Metrologia. 2022;59(1A):08001. https://doi.org/10.1088/0026-1394/59/1A/08001.

    Article  CAS  Google Scholar 

  66. Swart C. Metrology for metalloproteins—where are we now, where are we heading? Anal Bioanal Chem. 2013;405:5697–723. https://doi.org/10.1007/s00216-013-6933-y.

    Article  CAS  PubMed  Google Scholar 

  67. JCTLM Database: higher-order reference materials, methods amd servoces. https://www.jctlmdb.org/#/app/home. Accessed 2023–04–29.

  68. Pritchard C, O’Connor G, Ashcroft AE. The role of ion mobility spectrometry–mass spectrometry in the analysis of protein reference standards. Anal Chem. 2013;85(15):7205–12. https://doi.org/10.1021/ac400927s.

    Article  CAS  PubMed  Google Scholar 

  69. Sun H, Ma L, Wang L, Xiao P, Li H, Zhou M, et al. Research advances in hydrogen–deuterium exchange mass spectrometry for protein epitope mapping. Anal Bioanal Chem. 2021;413:2345–59. https://doi.org/10.1007/s00216-020-03091-9.

    Article  CAS  PubMed  Google Scholar 

  70. Duelge KJ, Parot J, Hackley VA, Zachariah MR. Quantifying protein aggregation kinetics using electrospray differential mobility analysis. J Pharm Biomed Anal. 2020;177:112845. https://doi.org/10.1016/j.jpba.2019.112845.

    Article  CAS  PubMed  Google Scholar 

  71. Clouet-Foraison N, Gaie-Levrel F, Coquelin L, Ebrard G, Gillery P, Delatour V. Absolute quantification of bionanoparticles by electrospray differential mobility analysis: an application to lipoprotein particle concentration measurements. Anal Chem. 2017;89(4):2242–9. https://doi.org/10.1021/acs.analchem.6b02909.

    Article  CAS  PubMed  Google Scholar 

  72. Abdullah MB, Dab C, Almalki M, Alnaim A, Abuzir A, Awada C. Ultrafast detection of SARS-COV-2 spike protein (S) and receptor-binding domain (RBD) in saliva using surface-enhanced Raman spectroscopy. Appl Sci. 2022;12(10):5039. https://doi.org/10.3390/app12105039.

    Article  CAS  Google Scholar 

  73. Li D, Zhang Z, Wang X, Wang Y, Gao X, Li Y. A direct method for detecting proteins in body fluids by surface-enhanced Raman spectroscopy under native conditions. Biosens Bioelectron. 2022;200:113907. https://doi.org/10.1016/j.bios.2021.113907.

    Article  CAS  PubMed  Google Scholar 

  74. Jones GR, Jackson C. The Joint Committee for Traceability in Laboratory Medicine (JCTLM)–its history and operation. Clin Chim Acta. 2016;453:86–94. https://doi.org/10.1016/j.cca.2015.11.016.

    Article  CAS  PubMed  Google Scholar 

  75. Jackson CM, Esnouf MP, Winzor DJ, Duewer DL. Defining and measuring biological activity: applying the principles of metrology. Accredit Qual Assur. 2007;12:283–94.

    Article  CAS  Google Scholar 

  76. Jones AR, Moraes I, Quaglia M. Structure-function metrology of proteins. Front Mol Biosci. 2023;10:1125791. https://doi.org/10.3389/fmolb.2023.1125791.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Siekmann L, Bonora R, Burtis CA, Ceriotti F, Clerc-Renaud P, Férard G, et al. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37°C. Part 7. Certification of four reference materials for the determination of enzymatic activity of γ-glutamyltransferase, lactate dehydrogenase, alanine aminotransferase and creatine kinase according to IFCC reference procedures at 37°C. Clin Chem Lab Med. 2002;40(7):739–45. https://doi.org/10.1515/CCLM.2002.127.

    Article  CAS  PubMed  Google Scholar 

  78. Wik L, Nordberg N, Broberg J, Björkesten J, Assarsson E, Henriksson S, et al. Proximity extension assay in combination with next-generation sequencing for high-throughput proteome-wide analysis. Mol Cell Proteomics. 2021;20. https://doi.org/10.1016/j.mcpro.2021.100168.

  79. Brinkerhoff H, Kang AS, Liu J, Aksimentiev A, Dekker C. Multiple rereads of single proteins at single–amino acid resolution using nanopores. Science. 2021;374(6574):1509–13. https://doi.org/10.1126/science.abl4381.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kammel M, Kummrow A, John M, Reitz S, Witt K, Neukammer J. Flow cytometer for reference measurements of blood cell concentrations with low uncertainty. In: 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, 2015. IEEE, pp 517–20.

  81. Neukammer J, Kammel M, Höckner J, Kummrow A, Ruf A. Reference procedure for the measurement of stem cell concentrations in apheresis products. PTB Mitt. 2015;125:70–3.

    Google Scholar 

  82. Liu YY. Research and uncertainty evaluation of leukocyte types and counting methods based on microscopic imaging flow cytometry. China Metrol. 2021;10:92–5.

    Google Scholar 

  83. Liu YY, Zhang L, Yang QS. Development of reference material for white blood cell count in urine sediment. Acta Metrol Sin. 2022;43(3):427–32.

    CAS  Google Scholar 

  84. Lin-Gibson S, Sarkar S, Elliott J, Plant A. Understanding and managing sources of variability in cell measurements. Cell Gene Ther Insights. 2016;2(6):663–73. https://doi.org/10.18609/cgti.2016.073.

    Article  Google Scholar 

  85. Lin-Gibson S, Sarkar S, Ito Y. Defining quality attributes to enable measurement assurance for cell therapy products. Cytotherapy. 2016;18(10):1241–4. https://doi.org/10.1016/j.jcyt.2016.07.002.

    Article  PubMed  Google Scholar 

  86. Shaw M, Zajiczek L, O’Holleran K. High speed structured illumination microscopy in optically thick samples. Methods. 2015;88:11–9. https://doi.org/10.1016/j.ymeth.2015.03.020.

    Article  CAS  PubMed  Google Scholar 

  87. Lv W, Fu B, Li M, Kang Y, Bai S, Lu C. Determination of IC 50 values of anticancer drugs on cells by D 2 O–single cell Raman spectroscopy. Chem Commun. 2022;58(14):2355–8. https://doi.org/10.1039/D1CC06857A.

    Article  CAS  Google Scholar 

  88. Liu S, Wang Z, Wang M, Meng T, Zhang Y, Zhang W, et al. Evaluation of volume-based flow cytometry as a potential primary method for quantification of bacterial reference material. Talanta. 2022:124197. https://doi.org/10.1016/j.talanta.2022.124197.

  89. Stebbings R, Wang L, Sutherland J, Kammel M, Gaigalas AK, John M, et al. Quantification of cells with specific phenotypes I: determination of CD4+ cell count per microliter in reconstituted lyophilized human PBMC prelabeled with anti-CD4 FITC antibody. Cytometry A. 2015;87(3):244–53. https://doi.org/10.1002/cyto.a.22614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Heumann KG. Isotope dilution mass spectrometry of inorganic and organic substances. Fresenius J Anal Chem. 1986;325(8):661–6.

    Article  CAS  Google Scholar 

  91. De Leenheer A, Lefevere M, Lambert W, Colinet E. Isotope-dilution mass spectrometry in clinical chemistry. Adv Clin Chem. 1985;24:111–61. https://doi.org/10.1016/S0065-2423(08)60272-3.

    Article  PubMed  Google Scholar 

  92. Wu L, Yang B, Bi J, Wang J. Development of bovine serum albumin certified reference material. Anal Bioanal Chem. 2011;400(10):3443–9. https://doi.org/10.1007/s00216-011-4994-3.

    Article  CAS  PubMed  Google Scholar 

  93. Viswanathan S, Keating A, Deans R, Hematti P, Prockop D, Stroncek DF, et al. Soliciting strategies for developing cell-based reference materials to advance mesenchymal stromal cell research and clinical translation. Stem Cells Dev. 2014;23(11):1157–67. https://doi.org/10.1089/scd.2013.0591.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kimothi SK. The uncertainty of measurements: physical and chemical metrology: impact and analysis. ASQ Quality Press. 2001, pp 85–93.

  95. Panteghini M, Braga F. Implementation of metrological traceability in laboratory medicine: where we are and what is missing. Clin Chem Lab Med. 2020;58(8):1200–4. https://doi.org/10.1515/cclm-2019-1128.

    Article  CAS  PubMed  Google Scholar 

  96. Braga F, Infusino I, Panteghini M. Role and responsibilities of laboratory medicine specialists in the verification of metrological traceability of in vitro medical diagnostics. J Med Biochem. 2015;34(3):282–7. https://doi.org/10.1515/jomb-2015-0004.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Braga F, Panteghini M. The utility of measurement uncertainty in medical laboratories. Clin Chem Lab Med. 2020;58(9):1407–13. https://doi.org/10.1515/cclm-2019-1336.

    Article  CAS  PubMed  Google Scholar 

  98. Karahalil B. Overview of systems biology and omics technologies. Curr Med Chem. 2016;23(37):4221–30. https://doi.org/10.2174/0929867323666160926150617.

    Article  CAS  PubMed  Google Scholar 

  99. Gehlenborg N, O’donoghue SI, Baliga NS, Goesmann A, Hibbs MA, Kitano H, et al. Visualization of omics data for systems biology. Nat Methods. 2010;7(Suppl 3):S56–68. https://doi.org/10.1038/nmeth.1436.

    Article  CAS  PubMed  Google Scholar 

  100. Noor E, Cherkaoui S, Sauer U. Biological insights through omics data integration. Curr Opin Syst Biol. 2019;15:39–47. https://doi.org/10.1016/j.coisb.2019.03.007.

    Article  Google Scholar 

  101. EN ISO 17511: 2020, In vitro diagnostic medical devices-requirements for establishing metrological traceability of values assigned to calibrators, trueness control materials and human samples (ISO/FDIS 17511:2020).

  102. Sandberg S, Fraser CG, Horvath AR, Jansen R, Jones G, Oosterhuis W, et al. Defining analytical performance specifications: consensus statement from the 1st Strategic Conference of the European Federation of Clinical Chemistry and Laboratory Medicine. Clin Chem Lab Med. 2015;53(6):833–5. https://doi.org/10.1515/cclm-2015-0067.

    Article  CAS  PubMed  Google Scholar 

  103. Rao J, Zheng S, Yang Y. Integrating supercomputing and artificial intelligence for life science. Patterns. 2022;3(12):100653. https://doi.org/10.1016/j.patter.2022.100653.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zhu W, Zhu Y, Yang X. Information engineering infrastructure for life sciences and its implementation in China. Sci China Life Sci. 2013;56:220–7.

    Article  CAS  PubMed  Google Scholar 

  105. Consortium SM-I. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat Biotechnol. 2014;32(9):903–14. https://doi.org/10.1038/nbt.2957.

    Article  CAS  Google Scholar 

  106. Consortium M, Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, et al. The microarray quality control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 2006;24(9):1151–61. https://doi.org/10.1038/nbt1239.

    Article  CAS  Google Scholar 

  107. Li S, Tighe SW, Nicolet CM, Grove D, Levy S, Farmerie W, et al. Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study. Nat Biotechnol. 2014;32(9):915–25. https://doi.org/10.1038/nbt.2972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu T-M, Bao W, et al. Performance comparison of one-color and two-color platforms within the microarray quality control (MAQC) project. Nat Biotechnol. 2006;24(9):1140–50. https://doi.org/10.1038/nbt1242.

    Article  CAS  PubMed  Google Scholar 

  109. Shi L, Kusko R, Wolfinger RD, Haibe-Kains B, Fischer M, Sansone S-A, et al. The International MAQC Society launches to enhance reproducibility of high-throughput technologies. Nat Biotechnol. 2017;35(12):1127–8. https://doi.org/10.1038/nbt.4029.

    Article  CAS  PubMed  Google Scholar 

  110. Luo J, Schumacher M, Scherer A, Sanoudou D, Megherbi D, Davison T, et al. A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. Pharmacogenomics J. 2010;10(4):278–91. https://doi.org/10.17615/03ar-de62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xiao W, Ren L, Chen Z, Fang LT, Zhao Y, Lack J, et al. Toward best practice in cancer mutation detection with whole-genome and whole-exome sequencing. Nat Biotechnol. 2021;39(9):1141–50. https://doi.org/10.1038/s41587-021-00994-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nayfach S, Pollard KS. Toward accurate and quantitative comparative metagenomics. Cell. 2016;166(5):1103–16. https://doi.org/10.1016/j.cell.2016.08.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nearing JT, Douglas GM, Hayes MG, MacDonald J, Desai DK, Allward N, et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat Commun. 2022;13(1):342. https://doi.org/10.1038/s41467-022-28034-z.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  114. McNutt M. Reproducibility. Science. 2014;343(6168):229. https://doi.org/10.1126/science.125047.

    Article  ADS  CAS  PubMed  Google Scholar 

  115. Tai AM, Albuquerque A, Carmona NE, Subramanieapillai M, Cha DS, Sheko M, et al. Machine learning and big data: implications for disease modeling and therapeutic discovery in psychiatry. Artif Intell Med. 2019;99:101704. https://doi.org/10.1016/j.artmed.2019.101704.

    Article  PubMed  Google Scholar 

  116. Oliveira AL. Biotechnology, big data and artificial intelligence. Biotechnol J. 2019;14(8):1800613. https://doi.org/10.1002/biot.201800613.

    Article  CAS  Google Scholar 

  117. Bohr A, Memarzadeh K The rise of artificial intelligence in healthcare applications. In: Artif Intell Healthc. Elsevier, 2020. pp 25–60.

  118. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR guiding principles for scientific data management and stewardship. Sci Data. 2016;3:160018. https://doi.org/10.1038/sdata.2016.18.

    Article  PubMed  PubMed Central  Google Scholar 

  119. SI brochure: the international system of units (SI). https://www.bipm.org/en/publications/si-brochure. Accessed 2023–04–29.

  120. Peng M, Sun F, Na N, Ouyang J. Target-triggered assembly of nanogap antennas to enhance the fluorescence of single molecules and their application in microRNA detection. Small. 2020;16(19):2000460. https://doi.org/10.1002/smll.202000460.

    Article  CAS  Google Scholar 

  121. Gilboa T, Garden PM, Cohen L. Single-molecule analysis of nucleic acid biomarkers–a review. Anal Chim Acta. 2020;1115:61–85. https://doi.org/10.1016/j.aca.2020.03.001.

    Article  CAS  PubMed  Google Scholar 

  122. Pan Y, Ma T, Meng Q, Mao Y, Chu K, Men Y, et al. Droplet digital PCR enabled by microfluidic impact printing for absolute gene quantification. Talanta. 2020;211:120680. https://doi.org/10.1016/j.talanta.2019.120680.

    Article  CAS  PubMed  Google Scholar 

  123. Pohl G, Shih I-M. Principle and applications of digital PCR. Expert Rev Mol Diagn. 2004;4(1):41–7. https://doi.org/10.1586/14737159.4.1.41.

    Article  CAS  PubMed  Google Scholar 

  124. Dong L, Wang X, Wang S, Du M, Niu C, Yang J, et al. Interlaboratory assessment of droplet digital PCR for quantification of BRAF V600E mutation using a novel DNA reference material. Talanta. 2020;207:120293. https://doi.org/10.1016/j.talanta.2019.120293.

    Article  CAS  PubMed  Google Scholar 

  125. Whale AS, Jones GM, Pavšič J, Dreo T, Redshaw N, Akyürek S, et al. Assessment of digital PCR as a primary reference measurement procedure to support advances in precision medicine. Clin chem. 2018;64(9):1296–307. https://doi.org/10.1373/clinchem.2017.285478.

    Article  CAS  PubMed  Google Scholar 

  126. Yoo H-B, Park S-R, Dong L, Wang J, Sui Z, Pavšič J, et al. International comparison of enumeration-based quantification of DNA copy-concentration using flow cytometric counting and digital polymerase chain reaction. Anal Chem. 2016;88(24):12169–76. https://doi.org/10.1021/acs.analchem.6b03076.

    Article  CAS  PubMed  Google Scholar 

  127. Li C, Soleyman R, Kohandel M, Cappellaro P. SARS-CoV-2 quantum sensor based on nitrogen-vacancy centers in diamond. Nano Lett. 2021;22(1):43–9. https://doi.org/10.1021/acs.nanolett.1c02868.

    Article  ADS  CAS  PubMed  Google Scholar 

  128. Paraskevaidi M, Matthew BJ, Holly BJ, Hugh BJ, Thulya CPV, Loren C, et al. Clinical applications of infrared and Raman spectroscopy in the fields of cancer and infectious diseases. Appl Spectrosc Rev. 2021;56(8–10):804–68. https://doi.org/10.1080/05704928.2021.1946076.

    Article  ADS  CAS  Google Scholar 

  129. Evans CL, Xie XS. Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem. 2008;1:883–909. https://doi.org/10.1146/annurev.anchem.1.031207.112754.

    Article  CAS  Google Scholar 

  130. Martínez-Martín D, Fläschner G, Gaub B, Martin S, Newton R, Beerli C, et al. Inertial picobalance reveals fast mass fluctuations in mammalian cells. Nature. 2017;550(7677):500–5. https://doi.org/10.1038/nature24288.

    Article  ADS  CAS  PubMed  Google Scholar 

  131. Tayarani M. Applications of artificial intelligence in battling against COVID-19: a literature review. Chaos Solitons Fractals. 2020. https://doi.org/10.1016/j.chaos.2020.110338.

    Article  MathSciNet  Google Scholar 

  132. Kohl M Standards, databases, and modeling tools in systems biology. In: Data Mining in Proteomics: From Standards to Applications. Springer, 2010. pp 413–27.

  133. Zheng Y, Liu Y, Yang J, Dong L, Zhang R, Tian S, et al. Multi-omics data integration using ratio-based quantitative profiling with Quartet reference materials. Nat Biotechnol. 2023. https://doi.org/10.1038/s41587-023-01934-1.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2023YFF0613300) and the basic research funding in key field sponsored by the National Institute of Metrology, People’s Republic of China (AKYZD2202).

Author information

Authors and Affiliations

Authors

Contributions

Lianhua Dong: conceptualization; project administration; formal analysis; visualization; resources; writing, original draft preparation; writing, review and editing; and funding acquisition. Yu Zhang: investigation, data curation, methodology, software, visualization, and writing, original draft preparation. Boqiang Fu: investigation, data curation, formal analysis, methodology, and writing, original draft preparation. Claudia Swart: investigation, data curation, formal analysis, methodology, and review and editing. Huayan Jiang: data curation and formal analysis. Yahui Liu: data curation; formal analysis; writing, original draft preparation; and writing, review and editing. Jim Huggett: investigation, formal analysis, methodology, and review and editing. Robert Wielgosz: data curation and formal analysis. Chunyan Niu: resources, formal analysis, and review and editing. Qianyi Li: formal analysis and review and editing. Yongzhuo Zhang: formal analysis and methodology. Sang-Ryoul Park: formal analysis and review and editing. Zhiwei Sui: formal analysis and review and editing. Lianchao Yu: review and editing. Yangyang Liu: review and editing. Qing Xie: review and editing. Hongfu Zhang: review and editing. Yueyuxiao Yang: review and editing. Xinhua Dai: formal analysis and visualization. Leming Shi: formal analysis, visualization, and review and editing. Ye Yin: formal analysis, visualization, and review and editing. Xiang Fang: conceptualization, formal analysis, and visualization.

Corresponding authors

Correspondence to Lianhua Dong, Xinhua Dai, Ye Yin or Xiang Fang.

Ethics declarations

Ethics approval

None.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Zhang, Y., Fu, B. et al. Reliable biological and multi-omics research through biometrology. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05239-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05239-3

Keywords

Navigation