Skip to main content

Advertisement

Log in

An overview of preconcentration techniques combined with inductively coupled plasma mass spectrometry for trace element determination in biological studies

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the last decades, the determination of trace elements in biological materials has emerged as an important area of study because of its relevance to human health and the environment. Inductively coupled plasma mass spectrometry (ICP-MS) has proven to be a powerful tool for trace element analysis, owing to its high sensitivity and ability to determine several elements in a single measurement. However, given the complex nature of biological matrices and the presence of elements, most of them at ultratrace levels, it becomes crucial to complement ICP-MS with preconcentration techniques to increase the sensitivity and selectivity of analytical methods. This article presents an exhaustive overview of liquid- and solid-phase preconcentration techniques used in combination with ICP-MS for trace element determination in different biological samples from 2000 to the present. An in-depth discussion of the advances on the application of state-of-the-art solvents and materials in trace element extraction and preconcentration is presented. Special attention is given to different strategies for elemental speciation analysis, employing both chromatographic and non-chromatographic techniques. The role of automation in these methodologies is also described. Finally, future trends and challenges related to this topic are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. He K. Trace elements in nails as biomarkers in clinical research. Eur J Clin Invest. 2011;41:98–102. https://doi.org/10.1111/j.365-2362.010.02373.x.

    Article  CAS  PubMed  Google Scholar 

  2. Mehri A. Trace elements in human nutrition (II)–an update. Int J Prev Med. 2020;11:2. https://doi.org/10.4103/ijpvm.IJPVM_48_19.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Smichowski P, Londonio A. A retrospective and prospective of the use of bio-and nanomaterials for preconcentration, speciation, and determination of trace elements: a review spanning 25 years of research. Anal Bioanal Chem. 2020;412:6023–36. https://doi.org/10.1007/s00216-020-2536-5.

    Article  CAS  PubMed  Google Scholar 

  4. Torregrosa D, Grindlay G, Gras L, Mora J. Immunoassays based on inductively coupled plasma mass spectrometry detection: so far so good, so what? Microchem J. 2021;166:106200. https://doi.org/10.1016/j.microc.2021.

    Article  CAS  Google Scholar 

  5. Al-Hakkani MFJSAS. Guideline of inductively coupled plasma mass spectrometry “ICP–MS”: fundamentals, practices, determination of the limits, quality control, and method validation parameters. SN Appl Sci. 2019;1(7):791. https://doi.org/10.1007/s42452-019-0825-5.

    Article  Google Scholar 

  6. Mogaddam MRA, Mohebbi A, Pazhohan A, Khodadadeian F, Farajzadeh MA. Headspace mode of liquid phase microextraction: a review. TrAC Trends Anal Chem. 2019;110:8–14. https://doi.org/10.1016/j.trac.2018.10.021.

    Article  CAS  Google Scholar 

  7. Hansen FA, Pedersen-Bjergaard S. Emerging extraction strategies in analytical chemistry. Anal Chem. 2019;92:2–15. https://doi.org/10.1021/acs.analchem.9b04677.

    Article  CAS  PubMed  Google Scholar 

  8. Llaver M, Fiorentini EF, Oviedo MN, Quintas PY, Wuilloud RG. Elemental speciation analysis in environmental studies: latest trends and ecological impact. J Environ Res Public Health. 2021;18:12135. https://doi.org/10.3390/ijerph182212135.

    Article  CAS  Google Scholar 

  9. McNaught AD, Wilkinson A (eds). International Union of Pure and Applied Chemistry. Compendium of chemical terminology: IUPAC recommendations (The “Gold Book”): 2nd ed. Oxford, U.K.: Blackwell Scientific Publications; 1997.

  10. World Health Organization (WHO). Trace elements in human nutrition and health. Geneva: World Health Organization; 1996.

  11. Islam MR, Akash S, Jony MH, Alam MN, Nowrin FT, Rahman MM, et al. Exploring the potential function of trace elements in human health: a therapeutic perspective. Mol Cell Biochem. 2023;1-31. https://doi.org/10.1007/s11010-022-04638-3.

  12. Al-Fartusie FS, Mohssan SN. Essential trace elements and their vital roles in human body. Indian J Adv Chem Sci. 2017;5:127–36. https://doi.org/10.22607/IJACS.2017.503003.

    Article  CAS  Google Scholar 

  13. Petrović M. Selenium: widespread yet scarce, essential yet toxic. Chem Texts. 2021;7:11. https://doi.org/10.1007/s40828-021-00137-y.

    Article  CAS  Google Scholar 

  14. Gumus ZP, Soylak M. Metal organic frameworks as nanomaterials for analysis of toxic metals in food and environmental applications. TrAC Trends Anal Chem. 2021;143:116417. https://doi.org/10.1016/j.trac.2021.

    Article  Google Scholar 

  15. El Hosry L, Sok N, Richa R, Al Mashtoub L, Cayot P, Bou-Maroun EJF. Sample preparation and analytical techniques in the determination of trace elements in food: a review. Foods. 2023;12:895. https://doi.org/10.3390/foods12040895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heitland P, Köster HD. Human biomonitoring of 73 elements in blood, serum, erythrocytes and urine. J Trace Elem Med Biol. 2021;64:126706. https://doi.org/10.1016/j.jtemb.2020.

    Article  CAS  PubMed  Google Scholar 

  17. Ferreira SL, Bezerra MA, Santos AS, dos Santos WN, Novaes CG, de Oliveira OM, et al. Atomic absorption spectrometry–a multi element technique. TrAC Trends Anal Chem. 2018;100:1–6. https://doi.org/10.1016/j.trac.2017.12.012.

    Article  CAS  Google Scholar 

  18. Yeung V, Miller DD, Rutzke MA. Atomic absorption spectroscopy, atomic emission spectroscopy, and inductively coupled plasma-mass spectrometry. Food Anal. 2017:129-50. https://doi.org/10.1007/978-3-319-45776-5_9.

  19. World Health Organization (WHO). Guidelines for drinking-water quality. 3rd ed. Geneva: World Health Organization; 2004.

  20. Oviedo MN, Fiorentini EF, Llaver M, Wuilloud RG. Alternative solvent systems for extraction and preconcentration of trace elements. TrAC Trends Anal Chem. 2021;137:116227. https://doi.org/10.1016/j.trac.2021.

    Article  CAS  Google Scholar 

  21. Mandal S, Lahiri S. A review on extraction, preconcentration and speciation of metal ions by sustainable cloud point extraction. Microchem J. 2022;175:107150. https://doi.org/10.1016/j.microc.2021.

    Article  CAS  Google Scholar 

  22. Bonta M, Anderl T, Cognigni A, Hejazifar M, Bica K, Limbeck A. Determination of residual chloride content in ionic liquids using LA-ICP-MS. RSC Adv. 2016;6:90273–9. https://doi.org/10.1039/C6RA21203D.

    Article  CAS  Google Scholar 

  23. Khezeli T, Daneshfar A. Development of dispersive micro-solid phase extraction based on micro and nano sorbents. TrAC Trends Anal Chem. 2017;89:99–118. https://doi.org/10.1016/j.trac.2017.01.004.

    Article  CAS  Google Scholar 

  24. He M, Huang L, Zhao B, Chen B, Hu B. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species-a review. Anal Chim Acta. 2017;973:1–24. https://doi.org/10.1016/j.aca.2017.03.047.

    Article  CAS  PubMed  Google Scholar 

  25. Asha AB, Narain R. Nanomaterials properties. In: Narain R (ed) Polymer science and nanotechnology. Fundamentals and applications. Elsevier Inc. A, editor. 2020. p. 343-59.

  26. Ghorbani M, Aghamohammadhassan M, Ghorbani H, Zabihi A. Trends in sorbent development for dispersive micro-solid phase extraction. Microchem J. 2020;158:105250. https://doi.org/10.1016/j.microc.2020.

    Article  CAS  Google Scholar 

  27. Mody VV, Singh A, Wesley B. Basics of magnetic nanoparticles for their application in the field of magnetic fluid hyperthermia. Eur J Nanomed. 2013;5:11–21. https://doi.org/10.1515/ejnm-2012-0008.

    Article  CAS  Google Scholar 

  28. Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Adv Mater. 2021;2:1821–71. https://doi.org/10.1039/D0MA00807A.

    Article  Google Scholar 

  29. Sajid M, Nazal MK, Ihsanullah I. Novel materials for dispersive (micro) solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples: a review. Anal Chim Acta. 2021;1141:246–62. https://doi.org/10.1016/j.aca.2020.07.064.

    Article  CAS  PubMed  Google Scholar 

  30. Szabo T, Maroni P, Szilagyi I. Size-dependent aggregation of graphene oxide. Carbon. 2020;160:145–55. https://doi.org/10.1016/j.carbon.2020.01.022.

    Article  CAS  Google Scholar 

  31. Hong F, Yu X, Wu N, Zhang Y-Q. Progress of in vivo studies on the systemic toxicities induced by titanium dioxide nanoparticles. Toxicol Res. 2017;6:115–33. https://doi.org/10.1039/c6tx00338a.

    Article  CAS  Google Scholar 

  32. Raptopoulou CP. Metal-organic frameworks: synthetic methods and potential applications. Materials. 2021;14:310. https://doi.org/10.3390/ma14020310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ansari SA, Ficiarà E, Ruffinatti FA, Stura I, Argenziano M, Abollino O, et al. Magnetic iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system. Materials. 2019;12(3):465. https://doi.org/10.3390/ma12030465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aslibeiki B, Kameli P, Ehsani MH. MnFe2O4 bulk, nanoparticles and film: a comparative study of structural and magnetic properties. Ceram Int. 2016;42:12789–95. https://doi.org/10.1016/j.ceramint.2016.05.041.

    Article  CAS  Google Scholar 

  35. Sharma N, Tiwari S, Saxena R. Determination of metal contaminants in beverages using solid phase extraction-based preconcentration and subsequent determination using spectro-analytical techniques: 1st ed.; Grumezescu AM, Holban AM, Eds.; Academic Press: Duxford, UK; 2019. 123-59 p.

  36. Mortada WI. Recent developments and applications of cloud point extraction: a critical review. Microchem J. 2020;157:105055. https://doi.org/10.1016/j.microc.2020.

    Article  CAS  Google Scholar 

  37. Kailasa SK, Koduru JR, Park TJ, Singhal RK, Wu H-F. Applications of single-drop microextraction in analytical chemistry: a review. Trends Environ Anal Chem. 2021;29:e00113. https://doi.org/10.1016/j.teac.2020.e.

    Article  CAS  Google Scholar 

  38. Khan WA, Arain MB, Yamini Y, Shah N, Kazi TG, Pedersen-Bjergaard S, et al. Hollow fiber-based liquid phase microextraction followed by analytical instrumental techniques for quantitative analysis of heavy metal ions and pharmaceuticals. J Pharm Anal. 2020;10:109–22. https://doi.org/10.1016/j.jpha.2019.12.003.

    Article  PubMed  Google Scholar 

  39. Venson R, Korb A-S, Cooper G. A review of the application of hollow-fiber liquid-phase microextraction in bioanalytical methods – a systematic approach with focus on forensic toxicology. J Chromatogr B. 2019;1108:32–53. https://doi.org/10.1016/j.jchromb.2019.01.006.

    Article  CAS  Google Scholar 

  40. Wang H, Liu X, Nan K, Chen B, He M, Hu B. Sample pre-treatment techniques for use with ICP-MS hyphenated techniques for elemental speciation in biological samples. J Anal At Spectrom. 2017;32:58–77. https://doi.org/10.1039/C6JA00077K.

    Article  CAS  Google Scholar 

  41. Kataoka H, Ishizaki A, Nonaka Y, Saito K. Developments and applications of capillary microextraction techniques: a review. Anal Chim Acta. 2009;655:8–29. https://doi.org/10.1016/j.aca.2009.09.032.

    Article  CAS  PubMed  Google Scholar 

  42. Da Silva MAM, Frescura VLA, Curtius AJ. Determination of noble metals in biological samples by electrothermal vaporization inductively coupled plasma mass spectrometry, following cloud point extraction. Spectrochim Acta Part B. 2001;56:1941–9. https://doi.org/10.1016/S0584-8547(01)00323-8.

    Article  Google Scholar 

  43. Li L, Hu B, Xia L, Jiang Z. Determination of trace Cd and Pb in environmental and biological samples by ETV-ICP-MS after single-drop microextraction. Talanta. 2006;70:468–73. https://doi.org/10.1016/j.talanta.2006.03.006.

    Article  CAS  PubMed  Google Scholar 

  44. Xia L, Wu Y, Hu B. Hollow-fiber liquid-phase microextraction prior to low-temperature electrothermal vaporization ICP-MS for trace element analysis in environmental and biological samples. J Mass Spectrom. 2007;42:803–10. https://doi.org/10.1002/jms.216.

    Article  CAS  PubMed  Google Scholar 

  45. Chen S, Xiao M, Lu D, Wang Z. The use of carbon nanofibers microcolumn preconcentration for inductively coupled plasma mass spectrometry determination of Mn, Co and Ni. Spectrochim Acta Part B. 2007;62:1216–21. https://doi.org/10.1016/j.sab.2007.10.025.

    Article  CAS  Google Scholar 

  46. Chen S, Liu Y, Yan J, Wang C, Lu D. Dispersive micro-solid phase extraction with fibrous TiO2@gC3N4 nanocomposites coupled with ICP-MS for the determination of cobalt and nickel in environmental and biological samples. At Spectrosc. 2020;41:169–74. https://doi.org/10.46770/AS.2020.04.005.

    Article  CAS  Google Scholar 

  47. Chen S, Yan J, Li J, Lu D. Dispersive micro-solid phase extraction using magnetic ZnFe2O4 nanotubes as adsorbent for preconcentration of Co(II), Ni(II), Mn(II) and Cd(II) followed by ICP-MS determination. Microchem J. 2019;147:232–8. https://doi.org/10.1016/j.microc.2019.02.066.

    Article  CAS  Google Scholar 

  48. Wang M, Ma H, Chi Q, Li Q, Li M, Zhang H, et al. A monolithic copolymer prepared from N-(4-vinyl)-benzyl iminodiacetic acid, divinylbenzene and N, N´-methylene bisacrylamide for preconcentration of cadmium (II) and cobalt (II) from biological samples prior to their determination by ICP-MS. Microchim Acta. 2019;186:1–10. https://doi.org/10.1007/s00604-019-3656-6.

    Article  CAS  Google Scholar 

  49. Yan P, He M, Chen B, Hu B. Restricted accessed nanoparticles for direct magnetic solid phase extraction of trace metal ions from human fluids followed by inductively coupled plasma mass spectrometry detection. Analyst. 2015;140:4298–306. https://doi.org/10.1039/C5AN00385G.

    Article  CAS  PubMed  Google Scholar 

  50. Sun J, Liang Q, Han Q, Zhang X, Ding M. One-step synthesis of magnetic graphene oxide nanocomposite and its application in magnetic solid phase extraction of heavy metal ions from biological samples. Talanta. 2015;132:557–63. https://doi.org/10.1016/j.talanta.2014.09.043.

    Article  CAS  PubMed  Google Scholar 

  51. Stefanova V, Georgieva D, Kmetov V, Roman I, Canals A. Unmodified manganese ferrite nanoparticles as a new sorbent for solid-phase extraction of trace metal–APDC complexes followed by inductively coupled plasma mass spectrometry analysis. J Anal At Spectrom. 2012;27:1743–52. https://doi.org/10.1039/C2JA30139C.

    Article  CAS  Google Scholar 

  52. Yamini Y, Rezazadeh M, Seidi S. Liquid-phase microextraction–the different principles and configurations. TrAC Trends Anal Chem. 2019;112:264–72. https://doi.org/10.1016/j.trac.2018.06.010.

    Article  CAS  Google Scholar 

  53. Bezerra MA, Ferreira da Mata Cerqueira UM, Ferreira SLC, Novaes CG, Novais FC, Valasques GS, et al. Recent developments in the application of cloud point extraction as procedure for speciation of trace elements. Appl Spectrosc Rev. 2022;57:338–52. https://doi.org/10.1080/05704928.2021.1916516.

    Article  CAS  Google Scholar 

  54. Vargas Medina DA, Maciel EVS, Lanças FM. Modern automated sample preparation for the determination of organic compounds: a review on robotic and on-flow systems. TrAC Trends Anal Chem. 2023;166:117171. https://doi.org/10.1016/j.trac.2023.

    Article  CAS  Google Scholar 

  55. Fiorentini EF, Llaver M, Oviedo MN, Quintas PY, Wuilloud RG. State-of-the-art analytical methods based on ionic liquids for food and beverage analysis. Green Anal Chem. 2022;1:100002. https://doi.org/10.1016/j.greeac.2022.

    Article  Google Scholar 

  56. Chisvert A, Cárdenas S, Lucena R. Dispersive micro-solid phase extraction. TrAC Trends Anal Chem. 2019;112:226–33. https://doi.org/10.1016/j.trac.2018.12.005.

    Article  CAS  Google Scholar 

  57. Delafiori J, Ring G, Furey A. Clinical applications of HPLC–ICP-MS element speciation: a review. Talanta. 2016;153:306–31. https://doi.org/10.1016/j.talanta.2016.02.035.

    Article  CAS  PubMed  Google Scholar 

  58. Wang H, He M, Chen B, Hu B. Advances in ICP-MS-based techniques for trace elements and their species analysis in cells. J Anal At Spectrom. 2017;32:1650–9. https://doi.org/10.1039/C6JA00414H.

    Article  CAS  Google Scholar 

  59. Marcinkowska M, Barałkiewicz D. Multielemental speciation analysis by advanced hyphenated technique–HPLC/ICP-MS: a review. Talanta. 2016;161:177–204. https://doi.org/10.1016/j.talanta.2016.08.034.

    Article  CAS  PubMed  Google Scholar 

  60. Ma S, He M, Chen B, Deng W, Zheng Q, Hu B. Magnetic solid phase extraction coupled with inductively coupled plasma mass spectrometry for the speciation of mercury in environmental water and human hair samples. Talanta. 2016;146:93–9. https://doi.org/10.1016/j.talanta.2015.08.036.

    Article  CAS  PubMed  Google Scholar 

  61. Montoro-Leal P, García-Mesa JC, Morales-Benítez I, de Torres AG, Alonso EV. Semiautomatic method for the ultra-trace arsenic speciation in environmental and biological samples via magnetic solid phase extraction prior to HPLC-ICP-MS determination. Talanta. 2021;235:122769. https://doi.org/10.1016/j.talanta.2021.

    Article  CAS  PubMed  Google Scholar 

  62. Xu Q, Chen B, He M, Hu B. Ti(IV) modified vinyl phosphate magnetic nanoparticles for simultaneous preconcentration of multiple arsenic species from chicken samples followed by HPLC-ICP-MS analysis. Electrophoresis. 2021;42:465–72. https://doi.org/10.1002/elps.202000158.

    Article  CAS  PubMed  Google Scholar 

  63. Moreno F, García-Barrera T, Gómez-Ariza J. Simultaneous speciation and preconcentration of ultra trace concentrations of mercury and selenium species in environmental and biological samples by hollow fiber liquid phase microextraction prior to high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. J Chromatogr A. 2013;1300:43–50. https://doi.org/10.1016/j.chroma.2013.02.083.

    Article  CAS  PubMed  Google Scholar 

  64. Chen J, Chen H, Jin X, Chen H. Determination of ultra-trace amount methyl-, phenyl-and inorganic mercury in environmental and biological samples by liquid chromatography with inductively coupled plasma mass spectrometry after cloud point extraction preconcentration. Talanta. 2009;77:1381–7. https://doi.org/10.1016/j.talanta.2008.09.021.

    Article  CAS  PubMed  Google Scholar 

  65. Yang L, Mester Z, Sturgeon RE. Determination of methylmercury in fish tissues by isotope dilution SPME-GC-ICP-MS. J Anal At Spectrom. 2003;18(5):431–6. https://doi.org/10.1039/B301299A.

    Article  CAS  Google Scholar 

  66. Clases D, Ueland M, Gonzalez de Vega R, Doble P, Pröfrock D. Quantitative speciation of volatile sulphur compounds from human cadavers by GC-ICP-MS. Talanta. 2021;221:121424. https://doi.org/10.1016/j.talanta.2020.

    Article  CAS  PubMed  Google Scholar 

  67. Suo F, Chen B, He M, Hu B. Monolithic capillary microextraction on-line combined with ICP-MS for determining Ni, Cu and Cd in biological samples. Anal Methods. 2016;8:4680–8. https://doi.org/10.1039/C6AY01008C.

    Article  CAS  Google Scholar 

  68. Giordano BC, Burgi DS, Hart SJ, Terray A. On-line sample pre-concentration in microfluidic devices: a review. Anal Chim Acta. 2012;718:11–24. https://doi.org/10.1016/j.aca.2011.12.050.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang J, Chen B, Wang H, He M, Hu B. Facile chip-based array monolithic microextraction system online coupled with ICPMS for fast analysis of trace heavy metals in biological samples. Anal Chem. 2017;89:6878–85. https://doi.org/10.1021/acs.analchem.7b01367.

    Article  CAS  PubMed  Google Scholar 

  70. Ou X, He M, Chen B, Hu B. One-step synthesis of mercapto modified hierarchical porous polymer capillary monolithic column for chip based array microextraction of mercury species in cells. Chem Eng J. 2021;420:130414. https://doi.org/10.1016/j.cej.2021.

    Article  CAS  Google Scholar 

  71. Yu X, Chen B, He M, Wang H, Hu B. Chip-based magnetic solid phase microextraction coupled with ICP-MS for the determination of Cd and Se in HepG2 cells incubated with CdSe quantum dots. Talanta. 2018;179:279–84. https://doi.org/10.1016/j.talanta.2017.11.013.

    Article  CAS  PubMed  Google Scholar 

  72. Chen Z, Chen B, He M, Hu B. Magnetic metal-organic framework composites for dual-column solid-phase microextraction combined with ICP-MS for speciation of trace levels of arsenic. Microchim Acta. 2020;187:1–9. https://doi.org/10.1007/s00604-019-4055-8.

    Article  CAS  Google Scholar 

  73. Chen Z, Chen B, He M, Wang H, Hu B. A porous organic polymer with magnetic nanoparticles on a chip array for preconcentration of platinum (IV), gold (III) and bismuth (III) prior to their on-line quantitation by ICP-MS. Microchim Acta. 2019;186:1–8. https://doi.org/10.1007/s00604-018-3139-1.

    Article  CAS  Google Scholar 

  74. Wang H, Wu Z, Zhang Y, Chen B, He M, Hu B. Chip-based liquid phase microextraction combined with electrothermal vaporization-inductively coupled plasma mass spectrometry for trace metal determination in cell samples. J Anal At Spectrom. 2013;28:1660–5. https://doi.org/10.1039/C3JA50223F.

    Article  CAS  Google Scholar 

  75. Shih T-T, Chen J-Y, Luo Y-T, Lin C-H, Liu Y-H, Su Y-A, et al. Development of a titanium dioxide-assisted preconcentration/on-site vapor-generation chip hyphenated with inductively coupled plasma-mass spectrometry for online determination of mercuric ions in urine samples. Anal Chim Acta. 2019;1063:82–90. https://doi.org/10.1016/j.aca.2019.02.035.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (FONCYT) (Project PICT-2019-03859-BID), and Universidad Nacional de Cuyo (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo G. Wuilloud.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Elemental Mass Spectrometry for Bioanalysis with guest editors Jörg Bettmer, Mario Corte-Rodríguez, and Márcia Foster Mesko.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oviedo, M.N., Luján, C.E., Lemos, A.A. et al. An overview of preconcentration techniques combined with inductively coupled plasma mass spectrometry for trace element determination in biological studies. Anal Bioanal Chem 416, 2641–2656 (2024). https://doi.org/10.1007/s00216-024-05124-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-024-05124-z

Keywords

Navigation