Skip to main content
Log in

Sensitive fluorescence ELISA for the detection of zearalenone based on self-assembly DNA nanocomposites and copper nanoclusters

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Zearalenone (ZEN), produced by Fusarium species, is a potential risk to human health. Traditional enzyme-linked immunosorbent assay (ELISA) is restricted due to low sensitivity for the detection of ZEN. Herein, enzyme nanocomposites (ALP-SA-Bio-ssDNA, ASBD) were prepared with the self-assembly strategy based on streptavidin-labeled alkaline phosphatase (SA-ALP) and dual-biotinylated ssDNA (B2-ssDNA). The enzyme nanocomposites improved the loading amount of ALP and catalyzed more ascorbic acid 2-phosphate to generate ascorbic acid (AA). Subsequently, Cu2+ could be reduced to copper nanoclusters (CuNCs) having strong fluorescence signal by AA with poly T. Benefiting from the high enzyme load of nanocomposites and the strong signal of CuNCs, the fluorescence ELISA was successfully established for the detection of ZEN. The proposed method exhibited lower limit of detection (0.26 ng mL−1) than traditional ELISA (1.55 ng mL−1). The recovery rates ranged from 92.00% to 108.38% (coefficient of variation < 9.50%) for the detection of zearalenone in corn and wheat samples. In addition, the proposed method exhibited no cross reaction with four other mycotoxins. This proposed method could be used in trace detection for food safety.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that has been used is confidential.

References

  1. Anfossi L, Baggiani C, Giovannoli C, D’Arco G, Giraudi G. Lateral-flow immunoassays for mycotoxins and phycotoxins: a review. Anal Bioanal Chem. 2013;405(2–3):467–80. https://doi.org/10.1007/s00216-012-6033-4.

    Article  PubMed  CAS  Google Scholar 

  2. Smith MC, Madec S, Coton E, Hymery N. Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins. 2016;8(4):94. https://doi.org/10.3390/toxins8040094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Xu SL, Zhang GG, Fang BL, Xiong QR, Duan HW, Lai WH. Lateral flow immunoassay based on polydopamine-coated gold nanoparticles for the sensitive detection of zearalenone in maize. Acs Appl Mater Inter. 2019;11(34):31283–90. https://doi.org/10.1021/acsami.9b08789.

    Article  CAS  Google Scholar 

  4. Kong WJ, Li JY, Qiu F, Wei JH, Xiao XH, Zheng YG, Yang MH. Development of a sensitive and reliable high performance liquid chromatography method with fluorescence detection for high-throughput analysis of multi-class mycotoxins in Coix seed. Anal Chim Acta. 2013;799:68–76. https://doi.org/10.1016/j.aca.2013.08.042.

    Article  PubMed  CAS  Google Scholar 

  5. Cho HD, Suh JH, Feng S, Eom T, Kim J, Hyun SM, Kim J, Wang Y, Han SB. Comprehensive analysis of multi-class mycotoxins in twenty different species of functional and medicinal herbs using liquid chromatography-tandem mass spectrometry. Food Control. 2019;96:517–26. https://doi.org/10.1016/j.foodcont.2018.10.007.

    Article  CAS  Google Scholar 

  6. Gonzalez-Jartin JM, Alfonso A, Rodriguez I, Sainz MJ, Vieytes MR, Botana LM. A QuEChERS based extraction procedure coupled to UPLC-MS/MS detection for mycotoxins analysis in beer. Food Chem. 2019;275:703–10. https://doi.org/10.1016/j.foodchem.2018.09.162.

    Article  PubMed  CAS  Google Scholar 

  7. Cheng Z, Li MH, Marriott PJ, Zhang XX, Wang SP, Li JG, Ma LY. Chemometric analysis of the volatile compounds generated by Aspergillus carbonarius strains isolated from grapes and dried vine fruits. Toxins. 2018;10(2):71. https://doi.org/10.3390/toxins10020071.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zhu WY, Ji GN, Chen RP, Xiang YF, Ji SF, Zhang SL, Gao ZX, Liu H, Wang Y, Han T. A fluorescence aptasensor based on hybridization chain reaction for simultaneous detection of T-2 toxins and zearalenone1. Talanta. 2023;255:124249. https://doi.org/10.1016/j.talanta.2022.124249.

    Article  PubMed  CAS  Google Scholar 

  9. Tang XQ, Li PW, Zhang Q, Zhang ZW, Zhang W, Jiang J. Time-resolved fluorescence immunochromatographic assay developed using two idiotypic nanobodies for rapid, quantitative, and simultaneous detection of aflatoxin and zearalenone in Maize and Its Products. Anal Chem. 2017;89(21):11520–8. https://doi.org/10.1021/acs.analchem.7b02794.

    Article  PubMed  CAS  Google Scholar 

  10. Lin XF, Li CX, Tong XY, Duan N, Wang ZP, Wu SJ. A portable paper-based aptasensor for simultaneous visual detection of two mycotoxins in corn flour using dual-color upconversion nanoparticles and Cu-TCPP nanosheets. Food Chem. 2023;404:134750. https://doi.org/10.1016/j.foodchem.2022.134750.

    Article  PubMed  CAS  Google Scholar 

  11. Jia YX, Zhao SQ, Li DS, Yang JL, Yang L. Portable chemiluminescence optical fiber aptamer-based biosensors for analysis of multiple mycotoxins. Food Control. 2023;144:109361. https://doi.org/10.1016/j.foodcont.2022.109361.

    Article  CAS  Google Scholar 

  12. Guan Y, Ma JN, Neng J, Yang BL, Wang Y, Xing FG. A Novel and label-free chemiluminescence detection of zearalenone based on a truncated aptamer conjugated with a G-quadruplex DNAzyme. Biosensors-Basel. 2023;13(1):118. https://doi.org/10.3390/bios13010118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wu SJ, Liu LH, Duan N, Li Q, Zhou Y, Wang ZP. Aptamer-based lateral flow test strip for rapid detection of zearalenone in corn samples. J Agr Food Chem. 2018;66(8):1949–54. https://doi.org/10.1021/acs.jafc.7b05326.

    Article  CAS  Google Scholar 

  14. Yan JX, Hu WJ, You KH, Ma ZE, Xu Y, Li YP, He QH. Biosynthetic mycotoxin conjugate mimetics-mediated green strategy for multiplex mycotoxin immunochromatographic assay. J Agr Food Chem. 2020;68(7):2193–200. https://doi.org/10.1021/acs.jafc.9b06383.

    Article  CAS  Google Scholar 

  15. Ma TY, Liu KX, Yang X, Yang JY, Pan MF, Wang S. Development of indirect competitive ELISA and visualized multicolor ELISA based on gold nanorods growth for the determination of zearalenone. Foods. 2021;10(11):2654. https://doi.org/10.3390/foods10112654.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Liu ZJ, Wang XY, Ren XX, Li WB, Sun JF, Wang XW, Huang YQ, Guo YG, Zeng HW. Novel fluorescence immunoassay for the detection of zearalenone using HRP-mediated fluorescence quenching of gold-silver bimetallic nanoclusters. Food Chem. 2021;355:129633. https://doi.org/10.1016/j.foodchem.2021.129633.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang FY, Liu B, Sheng W, Zhang Y, Liu Q, Li SJ, Wang S. Fluoroimmunoassays for the detection of zearalenone in maize using CdTe/CdS/ZnS quantum dots. Food Chem. 2018;255:421–8. https://doi.org/10.1016/j.foodchem.2018.02.060.

    Article  PubMed  CAS  Google Scholar 

  18. Li RY, Liu Q, Jin Y, Li BX. Fluorescent enzyme-linked immunoassay strategy based on enzyme-triggered in-situ synthesis of fluorescent copper nanoclusters. Sensor Actuat B-Chem. 2019;281:28–33. https://doi.org/10.1016/j.snb.2018.09.128.

    Article  CAS  Google Scholar 

  19. Xiong Y, Leng YK, Li XM, Huang XL, Xiong YH. Emerging strategies to enhance the sensitivity of competitive ELISA for detection of chemical contaminants in food samples. Trac-Trend Anal Chem. 2020;126:115861. https://doi.org/10.1016/j.trac.2020.115861.

    Article  CAS  Google Scholar 

  20. Xu CC, Liu QQ, Chu S, Li P, Wang FX, Si YM, Mao GJ, Wu CF, Wang H. A microdots array-based fluoremetric assay with superwettability profile for simultaneous and separate analysis of iron and copper in red wine. Anal Chim Acta. 2023;1254:341045. https://doi.org/10.1016/j.aca.2023.341045.

    Article  PubMed  CAS  Google Scholar 

  21. Wang ZX, Guo YR, Xianyu YL. Applications of self-assembly strategies in immunoassays: a review. Coordin Chem Rev. 2023;478:214974. https://doi.org/10.1016/j.ccr.2022.214974.

    Article  CAS  Google Scholar 

  22. Men D, Zhang TT, Hou LW, Zhou J, Zhang ZP, Shi YY, Zhang JL, Cui ZQ, Deng JY, Wang DB, Zhang XE. Self-assembly of ferritin nanoparticles into an enzyme nanocomposite with tunable size for ultrasensitive immunoassay. ACS Nano. 2015;9(11):10852–60. https://doi.org/10.1021/acsnano.5b03607.

    Article  PubMed  CAS  Google Scholar 

  23. Li ZW, Fan QS, Yin YD. Colloidal self-assembly approaches to smart nanostructured materials. Chem Rev. 2022;122(5):4976–5067. https://doi.org/10.1021/acs.chemrev.1c00482.

    Article  PubMed  CAS  Google Scholar 

  24. Li XY, Liu XW, Liu XG. Self-assembly of colloidal inorganic nanocrystals: nanoscale forces, emergent properties and applications. Chem Soc Rev. 2021;50(3):2074–101. https://doi.org/10.1039/d0cs00436g.

    Article  PubMed  CAS  Google Scholar 

  25. Hou L, Huang JJ, Liu SD, Lin TR, Zhao SL. Magneto-controlled fluorescent immunosensor for sensitive determination of biomarker via three-dimensional AuNCs/liposome networks. Sensor Actuat B-Chem. 2021;342:130075. https://doi.org/10.1016/j.snb.2021.130075.

    Article  CAS  Google Scholar 

  26. Li XH, Lin LY, Wang KY, Li J, Feng L, Song LJ, Liu XK, He JH, Sakthivel R, Chung RJ. Streptavidin-functionalized-polyethyleneimine/chitosan/HfO2-Pr6O11 nanocomposite using label-free electrochemical immunosensor for detecting the hunger hormone ghrelin. Compos Part B-Eng. 2021;224:109231. https://doi.org/10.1016/j.compositesb.2021.109231.

    Article  CAS  Google Scholar 

  27. Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR. Structural origins of high-affinity biotin binding to streptavidin. Science. 1989;243(4887):85–8. https://doi.org/10.1126/science.2911722.

    Article  PubMed  CAS  Google Scholar 

  28. Fang BL, Peng J, Zhang G, Xing KY, Chen WY, Liu DF, Shan S, Xiong YH, Lai WH. I-2/I–mediated fluorescence quenching of an Ag+-doped gold nanocluster-based immunoassay for sensitive detection of Escherichia coli O157:H7 in milk. J Dairy Sci. 2022;105(4):2922–30. https://doi.org/10.3168/jds.2021-21281.

    Article  PubMed  CAS  Google Scholar 

  29. Wu J, Chen YP, Yang MZ, Wang Y, Zhang C, Yang M, Sun JS, Xie MX, Jiang XY. Streptavidin-biotin-peroxidase nanocomplex-amplified microfluidics immunoassays for simultaneous detection of inflammatory biomarkers. Anal Chim Acta. 2017;982:138–47. https://doi.org/10.1016/j.aca.2017.05.031.

    Article  PubMed  CAS  Google Scholar 

  30. Song CM, Zhi AM, Liu QT, Yang JF, Jia GC, Shervin J, Tang L, Hu XF, Deng RG, Xu CL, Zhang GP. Rapid and sensitive detection of beta-agonists using a portable fluorescence biosensor based on fluorescent nanosilica and a lateral flow test strip. Biosens Bioelectron. 2013;50:62–5. https://doi.org/10.1016/j.bios.2013.06.022.

    Article  PubMed  CAS  Google Scholar 

  31. Shao YN, Duan H, Guo L, Leng YK, Lai WH, Xiong YH. Quantum dot nanobead-based multiplexed immunochromatographic assay for simultaneous detection of aflatoxin B-1 and zearalenone. Anal Chim Acta. 2018;1025:163–71. https://doi.org/10.1016/j.aca.2018.03.041.

    Article  PubMed  CAS  Google Scholar 

  32. An Y, Ren Y, Bick M, Dudek A, Waworuntu EHW, Tang J, Chen J, Chang BS. Highly fluorescent copper nanoclusters for sensing and bioimaging (vol 154, 112078, 2020). Biosens Bioelectron. 2020;156:112127. https://doi.org/10.1016/j.bios.2020.112127.

    Article  PubMed  CAS  Google Scholar 

  33. Mu J, Peng Y, Shi Z, Zhang DW, Jia Q. Copper nanocluster composites for analytical (bio)-sensing and imaging: a review. Microchim Acta. 2021;188(11):384. https://doi.org/10.1007/s00604-021-05011-9.

    Article  CAS  Google Scholar 

  34. Zhong YP, Xue FF, Wei P, Li RH, Cao CY, Yi T. Water-soluble MoS2 quantum dots for facile and sensitive fluorescence sensing of alkaline phosphatase activity in serum and live cells based on the inner filter effect. Nanoscale. 2018;10(45):21298–306. https://doi.org/10.1039/c8nr05549a.

    Article  PubMed  CAS  Google Scholar 

  35. Xu JH, Zhang H, Zhang W, Li P, Zhang W, Wang H, Tang B. Fluorescent nanosensor for in situ detection of phosphate and alkaline phosphatase in mice with parathyroid dysfunction. Chem Commun. 2020;56(16):2431–4. https://doi.org/10.1039/c9cc08828h.

    Article  CAS  Google Scholar 

  36. Liu L, Wu DH, Zhen S, Lu KQ, Yi XY, Sun ZF. Electrochemical detection of telomerase in cancer cells based on the in-situ formation of streptavidin-biotin-DNA-biotin networks for signal amplification. Sensor Actuat B-Chem. 2021;334:129659. https://doi.org/10.1016/j.snb.2021.129659.

    Article  CAS  Google Scholar 

  37. Sun J, Hu T, Xu XL, Wang L, Yang XR. A fluorescent ELISA based on the enzyme-triggered synthesis of poly (thymine)-templated copper nanoparticles. Nanoscale. 2016;8(38):16846–50. https://doi.org/10.1039/c6nr06446a.

    Article  PubMed  CAS  Google Scholar 

  38. Xing KY, Peng J, Shan S, Liu DF, Huang YN, Lai WH. Green enzyme-linked immunosorbent assay based on the single-stranded binding protein-assisted aptamer for the detection of mycotoxin. Anal Chem. 2020;92(12):8422–6. https://doi.org/10.1021/acs.analchem.0c01073.

    Article  PubMed  CAS  Google Scholar 

  39. Ma LY, Zhang XP, Peng Y, Chen W, Xiao Y, Fang HJ, Yang HL, Zhou Y. Based on intervening PCR for detection of alkaline phosphatase and zearalenone. Microchem J. 2023;186:108314. https://doi.org/10.1016/j.microc.2022.108314.

    Article  CAS  Google Scholar 

  40. Wang YA, Wang XF, Wang SY, Fotina HN, Wang ZL. Development of a highly sensitive and specific monoclonal antibody based on indirect competitive enzyme-linked immunosorbent assay for the determination of zearalenone in food and feed Samples. Toxins. 2022;14(3):220. https://doi.org/10.3390/toxins14030220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82260644) and Natural Science Foundation of Jiangxi Province (20212BAB215041) and Pilot Demonstration Project of Ceilings in Funding for Provincial Science and Technology Program of Jiangxi Academy of Sciences (2021YSBG22023 and 2023YJC2006).

Author information

Authors and Affiliations

Authors

Contributions

Xudong Jing: Conceptualization, Investigation, Software, Writing—original draft, Writing – review & editing. Sha Yu: Investigation, Software. Ganggang Zhang: Investigation, Software, Funding acquisition, Supervision, Writing – review & editing. Yanyan Tang: Investigation, Software. Jiaqi Yin: Investigation, Software. Juan Peng: Formal analysis, Methodology, Validation. Weihua Lai: Formal analysis, Methodology, Validation, Funding acquisition, Supervision, Writing – review & editing.

Corresponding authors

Correspondence to Ganggang Zhang or Weihua Lai.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1515 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, X., Yu, S., Zhang, G. et al. Sensitive fluorescence ELISA for the detection of zearalenone based on self-assembly DNA nanocomposites and copper nanoclusters. Anal Bioanal Chem 416, 983–992 (2024). https://doi.org/10.1007/s00216-023-05088-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05088-6

Keywords

Navigation