Skip to main content
Log in

Quasi-phase extraction-based surface plasmon resonance imaging method for coffee ring effect monitoring and biosensing

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Wavelength interrogation surface plasmon resonance imaging (WSPRi) sensing has unique advantages in high-throughput imaging detection. The refractive index resolution (RIR) of WSPRi is limited to the order of 10−6 RIU. This paper demonstrates a novel WSPRi sensing system with a wavelength scanning device of an acousto-optic tunable filter (AOTF) and a low-cost speckle-free SPR excitation source of a halogen lamp. We developed a sensitive quasi-phase extraction method for data processing. The new technique achieved an RIR of 8.84×10−7 RIU, which is the first WSPRi system that has an RIR in the order of 10−7 RIU. Moreover, we performed a real-time recording of the formation of the coffee ring effect during brine evaporation and enhanced the biosensor performance of SPR for the first time. We believe the higher RIR and accuracy of the system will benefit more potential applications toward exploring the biomolecules’ behaviors in biological and biochemistry studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhou J, Qi Q, Wang C, Qian Y, Liu G, Wang Y. Fu L Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens Bioelectron. 2019;142:111449. https://doi.org/10.1016/j.bios.2019.111449.

    Article  CAS  PubMed  Google Scholar 

  2. Chen C, Wang J. Optical biosensors: an exhaustive and comprehensive review. Analyst. 2020;145(5):1605–28. https://doi.org/10.1039/c9an01998g.

    Article  CAS  PubMed  Google Scholar 

  3. Lertvachirapaiboon C, Baba A, Ekgasit S, Shinbo K, Kato K, Kaneko F. Transmission surface plasmon resonance techniques and their potential biosensor applications. Biosens Bioelectron. 2018;99:399–415. https://doi.org/10.1016/j.bios.2017.07.069.

    Article  CAS  PubMed  Google Scholar 

  4. Bockova M, Slaby J, Springer T, Homola J. Advances in surface plasmon resonance imaging and microscopy and their biological applications. Annu Rev Anal Chem (Palo Alto Calif). 2019;12(1):151–76. https://doi.org/10.1146/annurev-anchem-061318-115106.

    Article  CAS  PubMed  Google Scholar 

  5. Zeng Y, Hu R, Wang L, Gu D, He J, Wu S-Y, Ho H-P, Li X, Qu J, Gao BZ, Shao Y. Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability. Nanophotonics. 2017;6(5):1017–30. https://doi.org/10.1515/nanoph-2017-0022.

    Article  Google Scholar 

  6. Wong CL, Olivo M. Surface plasmon resonance imaging sensors: a review. Plasmonics. 2014;9(4):809–24. https://doi.org/10.1007/s11468-013-9662-3.

    Article  CAS  Google Scholar 

  7. Puiu M, Bala C. SPR and SPR imaging: recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events. Sensors (Basel). 2016;16(6) https://doi.org/10.3390/s16060870.

  8. Zeng Y, Wang X, Zhou J, Miyan R, Qu J, Ho HP, Zhou K, Gao BZ, Chen J, Shao Y. High-throughput imaging surface plasmon resonance biosensing based on ultrafast two-point spectral-dip tracking scheme. Opt Express. 2020;28(14):20624–33. https://doi.org/10.1364/OE.396656.

    Article  CAS  PubMed  Google Scholar 

  9. Yesudasu V, Pradhan HS, Pandya RJ. Recent progress in surface plasmon resonance based sensors: a comprehensive review. Heliyon. 2021;7(3):e06321. https://doi.org/10.1016/j.heliyon.2021.e06321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang X, Zeng Y, Zhou J, Chen J, Miyan R, Zhang H, Qu J, Ho HP, Gao BZ, Shao Y. Ultrafast surface plasmon resonance imaging sensor via the high-precision four-parameter-based spectral curve readjusting method. Anal Chem. 2021;93(2):828–33. https://doi.org/10.1021/acs.analchem.0c03347.

    Article  CAS  PubMed  Google Scholar 

  11. Zeng Y, Wang L, Wu SY, He J, Qu J, Li X, Ho HP, Gu D, Gao BZ, Shao Y. Wavelength-scanning SPR imaging sensors based on an acousto-optic tunable filter and a white light laser. Sensors (Basel). 2017;17(1) https://doi.org/10.3390/s17010090.

  12. Jia B, Chen J, Zhou J, Zeng Y, Ho H-P, Shao Y. Passively and actively enhanced surface plasmon resonance sensing strategies towards single molecular detection. Nano Res. 2022;15:8367–88. https://doi.org/10.1007/s12274-022-4515-z.

    Article  Google Scholar 

  13. Qiu G, Gai Z, Tao Y, Schmitt J, Kullak-Ublick GA, Wang J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano. 2020;14(5):5268–77. https://doi.org/10.1021/acsnano.0c02439.

    Article  CAS  PubMed  Google Scholar 

  14. Chen Y, Chen D, Liang S, Dai Y, Bai X, Song B, Zhang D, Chen H, Feng L. Recent advances in field-controlled micro–nano manipulations and micro–nano robots. Adv Intell Syst. 2021;4(3) https://doi.org/10.1002/aisy.202100116.

  15. Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun. 2015;6:8686. https://doi.org/10.1038/ncomms9686.

    Article  CAS  PubMed  Google Scholar 

  16. Chen J, Zeng Y, Zhou J, Wang X, Jia B, Miyan R, Zhang T, Sang W, Wang Y, Qiu H, Qu J, Ho HP, Gao BZ, Shao Y, Gu Y. Optothermophoretic flipping method for biomolecule interaction enhancement. Biosens Bioelectron. 2022;204:114084. https://doi.org/10.1016/j.bios.2022.114084.

    Article  CAS  PubMed  Google Scholar 

  17. Yang M, Chen D, Hu J, Zheng X, Lin Z-J, Zhu H. The application of coffee-ring effect in analytical chemistry. TrAC Trends in Analytical Chemistry. 2022;157 https://doi.org/10.1016/j.trac.2022.116752.

  18. Sempels W, De Dier R, Mizuno H, Hofkens J, Vermant J. Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system. Nat Commun. 2013;4:1757. https://doi.org/10.1038/ncomms2746.

    Article  CAS  PubMed  Google Scholar 

  19. Devineau S, Anyfantakis M, Marichal L, Kiger L, Morel M, Rudiuk S, Baigl D. Protein adsorption and reorganization on nanoparticles probed by the coffee-ring effect: application to single point mutation detection. J Am Chem Soc. 2016;138(36):11623–32. https://doi.org/10.1021/jacs.6b04833.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang D, Gao B, Chen Y, Liu H. Converting colour to length based on the coffee-ring effect for quantitative immunoassays using a ruler as readout. Lab Chip. 2018;18(2):271–5. https://doi.org/10.1039/c7lc01127j.

    Article  CAS  PubMed  Google Scholar 

  21. Zang D, Tarafdar S, Tarasevich YY, Dutta Choudhury M, Dutta T. Evaporation of a droplet: from physics to applications. Physics Reports. 2019;804:1–56. https://doi.org/10.1016/j.physrep.2019.01.008.

    Article  CAS  Google Scholar 

  22. Zeng Y, Zhou J, Sang W, Kong W, Qu J, Ho H-P, Zhou K, Gao BZ, Chen J, Shao Y. High-sensitive surface plasmon resonance imaging biosensor based on dual-wavelength differential method. Frontiers Chemistry.2021; 9. https://doi.org/10.3389/fchem.2021.801355

  23. Miyan R, Wang X, Zhou J, Zeng Y, Qu J, Ho HP, Zhou K, Gao BZ, Chen J, Shao Y. Phase interrogation surface plasmon resonance hyperspectral imaging sensor for multi-channel high-throughput detection. Opt Express. 2021;29(20):31418–25. https://doi.org/10.1364/OE.433052.

    Article  CAS  PubMed  Google Scholar 

  24. Mampallil D, Eral HB. A review on suppression and utilization of the coffee-ring effect. Adv Colloid Interface Sci. 2018;252:38–54. https://doi.org/10.1016/j.cis.2017.12.008.

    Article  CAS  PubMed  Google Scholar 

  25. Routh AF. Drying of thin colloidal films. Rep Prog Phys. 2013;76(4):046603. https://doi.org/10.1088/0034-4885/76/4/046603.

    Article  CAS  PubMed  Google Scholar 

  26. Wang X, Zhang W, Wang S, Liu W, Liu N, Zhang D. A visual cardiovascular biomarker detection strategy based on distance as readout by the coffee-ring effect on microfluidic paper. Biochem Eng J. 2021; 176. https://doi.org/10.1016/j.bej.2021.108176

  27. Wang D, Loo F-C, Cong H, Lin W, Kong SK, Yam Y, Chen S-C, Ho HP. Real-time multi-channel SPR sensing based on DMD-enabled angular interrogation. Opt Express. 2018;26(19):24627–36. https://doi.org/10.1364/OE.26.024627.

    Article  CAS  PubMed  Google Scholar 

  28. Sereda A, Moreau J, Canva M, Maillart E. High performance multi-spectral interrogation for surface plasmon resonance imaging sensors. Biosens Bioelectron. 2014;54:175–80. https://doi.org/10.1016/j.bios.2013.10.049.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the projects from the National Natural Science Foundation of China (Grant Nos. 62275164, 62275168, 11774071); the Guangdong Natural Science Foundation and Province Project (2021A1515011916); and the Shenzhen Key Laboratory of Photonics and Biophotonics (ZDSYS20210623092006020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiajie Chen or Fangteng Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Nie, Z., Kai, D. et al. Quasi-phase extraction-based surface plasmon resonance imaging method for coffee ring effect monitoring and biosensing. Anal Bioanal Chem 415, 5735–5743 (2023). https://doi.org/10.1007/s00216-023-04854-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04854-w

Keywords

Navigation