Skip to main content
Log in

Facile immobilization of cholesterol oxidase on Pt,Ru–C nanocomposite and ionic liquid–modified carbon paste electrode for an efficient amperometric free cholesterol biosensing

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In present work, the enzyme cholesterol oxidase (ChOx) was immobilized by Nafion® (Naf) on Pt,Ru–C nanocomposite and an ionic liquid (IL)modified carbon paste electrode (CPE) in order to create cholesterol biosensor (Naf/ChOx/Pt,Ru–C/IL-CPE). The prepared working electrodes were characterized using scanning electron microscopy–energy-dispersive spectrometry, while their electrochemical performance was evaluated using electrochemical impedance spectroscopic, cyclic voltammetric, and amperometric techniques. Excellent synergism between IL 1-allyl-3-methylimidazolium dicyanamide ([AMIM][DCA]), Pt,Ru–C, and ChOx, as modifiers of CPE, offers the most pronounced analytical performance for improved cholesterol amperometric determination in phosphate buffer solution pH 7.50 at a working potential of 0.60 V. Under optimized experimental conditions, a linear relationship between oxidation current and cholesterol concentration was found for the range from 0.31 to 2.46 µM, with an estimated detection limit of 0.13 µM and relative standard deviation (RSD) below 5.5%. The optimized amperometric method in combination with the developed Naf/ChOx/Pt,Ru–C/IL-CPE biosensor showed good repeatability and high selectivity towards cholesterol biosensing. The proposed biosensor was successfully applied to determine free cholesterol in a human blood serum sample via its enzymatic reaction product hydrogen peroxide despite the presence of possible interferences. The percentage recovery ranged from 99.08 to 102.81%, while RSD was below 2.0% for the unspiked as well as the spiked human blood serum sample. The obtained results indicated excellent accuracy and precision of the method, concluding that the developed biosensor can be a promising alternative to existing commercial cholesterol tests used in medical practice.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rajaram R, Mathiyarasu J. The design and fabrication of disposable sensors: an overview. In: Pandikumar A, Shalini Devi KS, editors. Disposable electrochemical sensors for healthcare monitoring: material properties and design. The Royal Society of Chemistry: Croydon, United Kingdom; 2021; pp. 3, 13. https://doi.org/10.1039/9781839163364.

  2. Kaariz DGA, Darabi E, Mohammad ES. Fabrication of Au/ZnO/MWCNTs electrode and its characterization for electrochemical cholesterol biosensor. J Theor Appl Phys. 2020;14:339–48. https://doi.org/10.1007/s40094-020-00390-5.

    Article  Google Scholar 

  3. Li L-H, Dutkiewicz EP, Huang Y-C, Zhou H-B, Hsu C-C. Analytical methods for cholesterol quantification. J Food Drug Anal. 2019;27:375–86. https://doi.org/10.1016/j.jfda.2018.09.001.

    Article  CAS  PubMed  Google Scholar 

  4. Thakur N, Gupta D, Mandal D, Nagaiah TC. Ultrasensitive electrochemical biosensors for dopamine and cholesterol: recent advances, challenges and strategies. Chem Commun. 2021;57:13084. https://doi.org/10.1039/D1CC05271C.

    Article  CAS  Google Scholar 

  5. Shrestha R, Chen Z, Gao Z, Chen Y, Okada E, Ukawa S, Nakagawa T, Nakamura K, Tamakoshi A, Chiba H, Hui S-P. HPLC with spectrophotometric or mass spectrometric detection for quantifying very-long chain fatty acids in human plasma and its association with cardiac risk factors. Ann Clin Biochem. 2021;58:400–10. https://doi.org/10.1177/00045632211007.

    Article  CAS  PubMed  Google Scholar 

  6. Olisov D, Lee K, Jun S-H, Song SH, Kim JH, Lee YA, Shin CH, Song J. Measurement of serum steroid profiles by HPLC-tandem mass spectrometry. J Chromatogr B. 2019;1117:1–9. https://doi.org/10.1016/j.jchromb.2019.04.001.

    Article  CAS  Google Scholar 

  7. Tran HV, Nguyen TV, Nguyen LTN, Hoang HS, Huynh CD. Silver nanoparticles as a bifunctional probe for label-free and reagentless colorimetric hydrogen peroxide chemosensor and cholesterol biosensor. J Sci-Adv Mater Dev. 2020;5:385–91. https://doi.org/10.1016/j.jsamd.2020.06.001.

    Article  Google Scholar 

  8. Xu X, Zhao Y, Tan H, Ma Y, Li Y. In situ encapsulation of horseradish peroxidase in zeolitic imidazolate framework–8 enables catalyzing luminol reaction under near-neutral conditions for sensitive chemiluminescence determination of cholesterol. Microchim Acta. 2020;187:346. https://doi.org/10.1007/s00604-020-04313-8.

    Article  CAS  Google Scholar 

  9. Amiri M, Arshi S. An overview on electrochemical determination of cholesterol. Electroanalysis. 2020;32:1391–407. https://doi.org/10.1002/elan.201900669.

    Article  CAS  Google Scholar 

  10. Chokkareddy R, Niranjan T, Redhi GG. Ionic liquid based electrochemical sensors and their applications. In: Green sustainable process for chemical and environmental engineering and science. Elsevier: Amsterdam, The Netherlands; 2020. pp. 367–387. https://doi.org/10.1016/B978-0-12-817386-2.00013-5.

  11. Okwundu OS, Aniekwe EU, Nwanno CE. Unlimited potentials of carbon: different structures and uses (a Review). Metall Mater Eng. 2018;24:145–71. https://doi.org/10.30544/388.

    Article  Google Scholar 

  12. Tigari G, Manjunatha JG, Nagarajappa H, Prinith NS. Research developments in carbon materials based sensors for determination of hormones. J Electrochem Sci Eng. 2022;12:3–23. https://doi.org/10.5599/jese.1094.

    Article  CAS  Google Scholar 

  13. Unal DN, Sadak S, Uslu B. A review on electrochemical and optical sensing platform based on ionic liquids for different molecules determination. Crit Rev Anal Chem. 2021;10:1–27. https://doi.org/10.1080/10408347.2021.1978055.

    Article  CAS  Google Scholar 

  14. Ghorbanizamani F, Timur S. Ionic liquids from biocompatibility and electrochemical aspects toward applying in biosensing devices. Anal Chem. 2018;90:640–8. https://doi.org/10.1021/acs.analchem.7b03596.

    Article  CAS  PubMed  Google Scholar 

  15. Kalambate PK, Rao Z, Dhanjai, Wu J, Shen Y, Boddula R, Huang Y. Electrochemical (bio) sensors go green. Biosens Bioelectron. 2020;163:112270. https://doi.org/10.1016/j.bios.2020.112270.

    Article  CAS  PubMed  Google Scholar 

  16. Shamshina JL, Berton P. Use of ionic liquids in chitin biorefinery: a systematic review. Front Bioeng Biotechnol. 2020;8:11. https://doi.org/10.3389/fbioe.2020.00011.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang X, Hao J. Recent advances in ionic liquid-based electrochemical biosensors. Sci Bull. 2016;61:1281–95. https://doi.org/10.1007/s11434-016-1151-6.

    Article  CAS  Google Scholar 

  18. Yavir K, Marcinkowski Ł, Marcinkowska R, Namieśnik J, Kloskowski A. Analytical applications and physicochemical properties of ionic liquid based hybrid materials: a review. Anal Chim Acta. 2019;1054:1–16. https://doi.org/10.1016/j.aca.2018.10.061.

    Article  CAS  PubMed  Google Scholar 

  19. Bankole OE, Verma DK, Chávez González ML, Guzmán Ceferino J, Sandoval-Cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. Food Biosci. 2022;47:101695. https://doi.org/10.1016/j.fbio.2022.101695.

    Article  Google Scholar 

  20. Maduraiveeran G, Sasidharan M, Ganesan V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron. 2018;103:113–29. https://doi.org/10.1016/j.bios.2017.12.031.

    Article  CAS  PubMed  Google Scholar 

  21. Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors. 2021;21:1109. https://doi.org/10.3390/s21041109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nemiwal M, Zhang TC, Kumar D. Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules. Enzyme Microb Technol. 2022;156:110006. https://doi.org/10.1016/j.enzmictec.2022.110006.

    Article  CAS  PubMed  Google Scholar 

  23. Rajapaksha RDAA, Hashim U, Gopinath SCB, Parmin NA, Fernando CAN. Nanoparticles in electrochemical bioanalytical analysis. In: Nanoparticles in analytical and medical devices. Elsevier: Amsterdam, The Netherlands; 2021. pp 83–112. https://doi.org/10.1016/B978-0-12-821163-2.00006-6.

  24. Saxena U, Das AB. Nanomaterials towards fabrication of cholesterol biosensors: key roles and design approaches. Biosens Bioelectron. 2016;75:196–205. https://doi.org/10.1016/j.bios.2015.08.042.

    Article  CAS  PubMed  Google Scholar 

  25. Stephanie R, Kim MW, Kim SH, Kim J-K, Park CY, Park TJ. Recent advances of bimetallic nanomaterials and its nanocomposites for biosensing applications. Trend Anal Chem. 2021;135:116159. https://doi.org/10.1016/j.trac.2020.116159.

    Article  CAS  Google Scholar 

  26. Kaya SI, Yıldırım S, Cetinkaya A, Erkmen C, Uslu B, Ozkan SA. Nanomaterial-based electroanalytical sensors for the selected prohibited anabolic agents, hormones and metabolic modulators and their sensitive assays. Trend Anal Chem. 2021;145:116457. https://doi.org/10.1016/j.trac.2021.116457.

    Article  CAS  Google Scholar 

  27. Canbay E, Yaşa İ, Akyilmaz E. Development an amperometric microbial-enzyme hybrid cholesterol biosensor based on ionic liquid MWCNT carbon paste electrode. Electroanalysis. 2021;33:2381–91. https://doi.org/10.1002/elan.202100251.

    Article  CAS  Google Scholar 

  28. Karimi S, Ghourchian H, Rahimi P, Rafiee-Pour H-A. A nanocomposite based biosensor for cholesterol determination. Anal Methods. 2012;4:3225–31. https://doi.org/10.1039/C2AY25826A.

    Article  CAS  Google Scholar 

  29. Wolny A, Chrobok A. Ionic liquids for development of heterogeneous catalysts based on nanomaterials for biocatalysis. Nanomaterials. 2021;11:2030. https://doi.org/10.3390/nano11082030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rzelewska-Piekut M, Regel-Rosocka M. Separation of Pt(IV), Pd(II), Ru(III) and Rh(III) from model chloride solutions by liquid-liquid extraction with phosphonium ionic liquids. Sep Purif Technol. 2019;212:791–801. https://doi.org/10.1016/j.seppur.2018.11.091.

    Article  CAS  Google Scholar 

  31. Alagappan M, Immanuel S, Sivasubramanian R, Kandaswamy A. Development of cholesterol biosensor using Au nanoparticles decorated f-MWCNT covered with polypyrrole network. Arab J Chem. 2020;13:2001–10. https://doi.org/10.1016/j.arabjc.2018.02.018.

    Article  CAS  Google Scholar 

  32. Devi S, Kanwar SS. Cholesterol oxidase: source, properties and applications. Insights Enzyme Res. 2017;1:1. https://doi.org/10.21767/2573-4466.100005.

    Article  Google Scholar 

  33. Li G, Zeng J, Zhao L, Wang Z, Dong C, Liang J, Zhou Z, Huang Y. Amperometric cholesterol biosensor based on reduction graphene oxide-chitosan-ferrocene/platinum nanoparticles modified screen-printed electrode. J Nanopar Res. 2019;21:162. https://doi.org/10.1007/s11051-019-4602-6.

    Article  CAS  Google Scholar 

  34. Rodrigues F, Devi S, Meenakshi S, Pandian K, Perumal P. Carbon nanotube based amperometric biosensor for the quantitative detection of cholesterol. IOSR J Biotechnol Biochem. 2017;3:10–20. https://doi.org/10.9790/264X-03021020.

    Article  Google Scholar 

  35. Salazar P, Martín M, González-Mora JL. In situ electrodeposition of cholesterol oxidase-modified polydopamine thin film on nanostructured screen printed electrodes for free cholesterol determination. J Electroanal Chem. 2019;837:191–9. https://doi.org/10.1016/j.jelechem.2019.02.032.

    Article  CAS  Google Scholar 

  36. Zheng Y, Xuan X, Wang J, Fan M. The enhanced dissolution of β-cyclodextrin in some hydrophilic ionic liquids. J Phys Chem A. 2010;114:3926–31. https://doi.org/10.1021/jp907333v.

    Article  CAS  PubMed  Google Scholar 

  37. Yu X, Sun Y, Xue L, Huang X, Qu Y. Strategies for improving the catalytic performance of an enzyme in ionic liquids. Top Catal. 2014;57:923–34. https://doi.org/10.1007/s11244-014-0253-0.

    Article  CAS  Google Scholar 

  38. Švancara I, Metelka R, Vytřas K. Piston-driven carbon paste electrode holders for electrochemical measurements. In: Vytřas K, Kalcher K, editors. Sensing in electroanalysis: University of Pardubice, Pardubice; 2005. p. 7.

  39. Ravisankar P, Naga Navya Ch, Pravallika D, Navya SD. A review on step-by-step analytical method validation. IOSR J Pharm. 2015;5:7–19.

    Google Scholar 

  40. Anojčić J, Guzsvány V, Vajdle O, Kónya Z, Kalcher K. Rapid amperometric determination of H2O2 by a Pt nanoparticle/Vulcan XC72 composite-coated carbon paste electrode in disinfection and contact lens solutions. Monatsh Chem. 2018;149:1727–38. https://doi.org/10.1007/s00706-018-2253-4.

    Article  CAS  Google Scholar 

  41. Anojčić J, Kullawanichaiyanan K, Mutić S, Guzsvány V, Leesakul N, Mimica Dukić N. Self-assembled iridium(III) complex microspheres on the carbon paste electrode surface for signal enhanced amperometric determination of H2O2 in color cream developers. J Electroanal Chem. 2022;904:115873. https://doi.org/10.1016/j.jelechem.2021.115873.

    Article  CAS  Google Scholar 

  42. Ghosh S, Ahmad R, Kumar KS. Immobilization of cholesterol oxidase: an overview. Open Biotechnol J. 2018;12:176–88. https://doi.org/10.2174/1874070701812010176.

    Article  CAS  Google Scholar 

  43. KaliyarajSelva Kumar A, Zhang Y, Li D, Compton RG. A mini-review: how reliable is the drop casting technique? Electrochem Commun. 2020;121:10686. https://doi.org/10.1016/j.elecom.2020.106867.

    Article  CAS  Google Scholar 

  44. García-Miranda Ferrari A, Foster CW, Kelly PJ, Brownson DAC, Banks CE. Determination of the electrochemical area of screen-printed electrochemical sensing platforms. Biosensors. 2018;8:53. https://doi.org/10.3390/bios8020053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Figueiredo-Filho LCS, Brownson DAC, Gómez-Mingot M, Iniesta J, Fatibello-Filho O, Banks CE. Exploring the electrochemical performance of graphitic paste electrodes: graphene vs. graphite. Analyst. 2013;138:6354. https://doi.org/10.1039/C3AN00950E.

    Article  CAS  PubMed  Google Scholar 

  46. Vicentini FC, Ravaninia AE, Figueiredo-Filho LCS, Iniesta J, Banks CE, Fatibello-Filho O. Imparting improvements in electrochemical sensors: evaluation of different carbon blacks that give rise to significant improvement in the performance of electroanalytical sensing platforms. Electrochim Acta. 2014;157:125–33. https://doi.org/10.1016/j.electacta.2014.11.204.

    Article  CAS  Google Scholar 

  47. Švancara I, Kalcher K, Walcarius A, Vytras K. Electroanalysis with carbon paste electrodes. Boca Raton: CRC Press; 2012.

    Book  Google Scholar 

  48. Zarrougui R, Hachicha R, Rjab R, Ghodbane O. 1-Allyl-3-methylimidazolium-based ionic liquids employed as suitable electrolytes for high energy density supercapacitors based on graphene nanosheets electrodes. J Mol Liq. 2018;249:795–804. https://doi.org/10.1016/j.molliq.2017.11.078.

    Article  CAS  Google Scholar 

  49. Pérez-Rodríguez S, Pastor E, Lázaro MJ. Electrochemical behavior of the carbon black Vulcan XC-72R: influence of the surface chemistry. Int J Hydrog Energy. 2018;43:7911–22. https://doi.org/10.1016/j.ijhydene.2018.03.040.

    Article  CAS  Google Scholar 

  50. Siller-Ceniceros AA, Sánchez-Castro ME, Morales-Acosta D, Torres-Lubian JR, Martínez GE, Rodríguez-Varela FJ. Innovative functionalization of Vulcan XC-72 with Ru organometallic complex: significant enhancement in catalytic Activity of Pt/C Electrocatalyst for the methanol oxidation reaction (MOR). App Catal B: Environ. 2017;209:455–67. https://doi.org/10.1016/j.apcatb.2017.03.023.

    Article  CAS  Google Scholar 

  51. Yang G, Sun Y, Lv P, Zhen F, Cao X, Chen X, Wang Z, Yuan Z, Kong X. Preparation of Pt–Ru/C as an oxygen-reduction electrocatalyst in microbial fuel cells for wastewater treatment. Catalysts. 2016;6:150. https://doi.org/10.3390/catal6100150.

    Article  CAS  Google Scholar 

  52. Yu X, Zhang Q, Ling Y, Yang Z, Cheng H. Promoted stability and electrocatalytic activity of PtRu electrocatalyst derived from coating by cerium oxide with high oxygen storage capacity. App Surf Sci. 2018;455:815–20. https://doi.org/10.1016/j.apsusc.2018.06.058.

    Article  CAS  Google Scholar 

  53. Kung C-C, Lin P-Y, Buse FJ, Xue Y, Yu X, Dai L, Liu C-C. Preparation and characterization of three dimensional graphene foam supported platinum–ruthenium bimetallic nanocatalysts for hydrogen peroxide based electrochemical biosensors. Biosens Bioelectron. 2014;52:1–7. https://doi.org/10.1016/j.bios.2013.08.025.

    Article  CAS  PubMed  Google Scholar 

  54. Liu T-Z, Hu R, Liu Y, Zhang K-L, Bai R-Y, Yang Y-H. Amperometric immunosensor based on covalent organic frameworks and Pt/Ru/C nanoparticles for the quantification of C-reactive protein. Microchim Acta. 2020;187:320. https://doi.org/10.1007/s00604-020-04286-8.

    Article  CAS  Google Scholar 

  55. Stasyuk N, Gayda G, Zakalskiy A, Zakalska O, Serkiz R, Gonchar M. Amperometric biosensors based on oxidases and PtRu nanoparticles as artificial peroxidase. Food Chem. 2019;285:213–20. https://doi.org/10.1016/j.foodchem.2019.01.117.

    Article  CAS  PubMed  Google Scholar 

  56. Kumari L, Kanwar SS. Cholesterol oxidase and its applications. Adv Microbiol. 2012;2:49–65. https://doi.org/10.4236/aim.2012.22007.

    Article  Google Scholar 

  57. John RAB, Kumar AR. A critical review on recent advancements and crucial aspects of enzymatic and non-enzymatic cholesterol biosensors. Res J Pharm Biol Chem Sci. 2021;7:12–40. https://doi.org/10.26479/2021.0704.02.

    Article  CAS  Google Scholar 

  58. Kalaivani GJ, Suja SK. Cholesterol oxidase immobilized inulin based nanocomposite as the sensing material for cholesterol in biological and food samples. Enzyme Microb Technol. 2020;140:109631. https://doi.org/10.1016/j.enzmictec.2020.109631.

    Article  CAS  Google Scholar 

  59. Narwal V, Deswal R, Batra B, Kalra V, Hooda R, Sharma M, Rana JS. Cholesterol biosensors: a review. Steroids. 2019;143:6–17. https://doi.org/10.1016/j.steroids.2018.12.003.

    Article  CAS  PubMed  Google Scholar 

  60. Dervisevic M, Çevik E, Şenel M, Nergiz C, Abasiyanik MF. Amperometric cholesterol biosensor based on reconstituted cholesterol oxidase on boronic acid functional conducting polymers. J Electroanal Chem. 2016;776:18–24. https://doi.org/10.1016/j.jelechem.2016.06.033.

    Article  CAS  Google Scholar 

  61. Kim MW, Kim YH, Bal J, Stephanie R, Baek SH, Lee SK, Park CY, Park TJ. Rational design of bienzyme nanoparticles-based total cholesterol electrochemical sensors and the construction of cholesterol oxidase expression system. Sens Actuators: B Chem. 2021;349:130742. https://doi.org/10.1016/j.snb.2021.130742.

    Article  CAS  Google Scholar 

  62. Jang H-S, Kim D, Lee C, Yan B, Qin X, Piao Y. Nafion coated Au nanoparticle-graphene quantum dot nanocomposite modified working electrode for voltammetric determination of dopamine. Inorg Chem Commun. 2019;105:174–81. https://doi.org/10.1016/j.inoche.2019.05.009.

    Article  CAS  Google Scholar 

  63. Zheng D, Ye J, Zhou L, Zhang Y, Yu C. Simultaneous determination of dopamine, ascorbic acid and uric acid on ordered mesoporous carbon/Nafion composite film. J Electroanal Chem. 2009;625:82–7. https://doi.org/10.1016/j.jelechem.2008.10.012.

    Article  CAS  Google Scholar 

  64. Kumar S, Vicente-Beckett V. Glassy carbon electrodes modified with multiwalled carbon nanotubes for the determination of ascorbic acid by square-wave voltammetry. Beilstein J Nanotechnol. 2012;3:388–96. https://doi.org/10.3762/bjnano.3.45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of our wonderful colleague and Professor Dr. Valéria Guzsvány in remembrance of her great effort and conceptualization of this work.‬‬‬‬‬‬‬

Funding

The authors received financial support from the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (Grant No. 451–03-47/2023–01/200125) and CEEPUSIII (CZ-0212–16-2223) network.‬‬‬‬‬‬

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmina Anojčić.

Ethics declarations

Ethics approval

The studies have been approved by the Ethics Committee of the Faculty of Sciences, University of Novi Sad (No. of decision 0601–117/23–15-2), and the studies have been performed in accordance with ethical standards.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 360 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutić, S., Stanković, D., Kónya, Z. et al. Facile immobilization of cholesterol oxidase on Pt,Ru–C nanocomposite and ionic liquid–modified carbon paste electrode for an efficient amperometric free cholesterol biosensing. Anal Bioanal Chem 415, 5709–5722 (2023). https://doi.org/10.1007/s00216-023-04847-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04847-9

Keywords

Navigation