Skip to main content
Log in

Microgel-based etalon immunoassay for IgG detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We developed an immunoassay for mouse immunoglobulin (IgG) quantitation using poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAm-co-AAc) microgel-based etalon devices. To achieve this, a biotinylated primary antibody specific to mouse IgG was immobilized on the top Au layer of an etalon device via its interaction with a streptavidin-modified etalon surface. Mouse IgG captured on the etalon surface from the solution was quantified using an HRP-conjugated secondary antibody. HRP catalyzed the oxidation of 4-chloro-1-naphthol (4CN) to form insoluble 4-chloro-1-naphthon (4CNP), resulting in a concentration change of 4CN in solution. The etalon was able to detect the 4CN concentration change by monitoring the extent of the etalon’s reflectance peak shift, which allows the quantitation of mouse IgG. The etalon-based assay can detect mouse IgG down to 0.018 nM with a linear range of 0.02–5 nM.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Scheme 3
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang S-M, Lv S, Zhang W, Cui Y. Microfluidic point-of-care (POC) devices in early diagnosis: a review of opportunities and challenges. Sensors. 2022;22(4):1620. https://doi.org/10.3390/s22041620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zheng X, Zhang F, Wang K, Zhang W, Li Y, Sun Y, et al. Smart biosensors and intelligent devices for salivary biomarker detection. TrAC, Trends Anal Chem. 2021;140:116281. https://doi.org/10.1016/j.trac.2021.116281.

    Article  CAS  Google Scholar 

  3. Nimse SB, Sonawane MD, Song K-S, Kim T. Biomarker detection technologies and future directions. Analyst. 2016;141(3):740–55. https://doi.org/10.1039/C5AN01790D.

    Article  CAS  PubMed  Google Scholar 

  4. Hawkridge AM, Muddiman DC. Mass spectrometry–based biomarker discovery: toward a global proteome index of individuality. Annu Rev Anal Chem (Palo Alto Calif). 2009;2:265. https://doi.org/10.1146/annurev.anchem.1.031207.112942.

    Article  CAS  PubMed  Google Scholar 

  5. Holford TR, Davis F, Higson SP. Recent trends in antibody based sensors. Biosens Bioelectron. 2012;34(1):12–24. https://doi.org/10.1016/j.bios.2011.10.023.

    Article  CAS  PubMed  Google Scholar 

  6. Di Nardo F, Chiarello M, Cavalera S, Baggiani C, Anfossi L. Ten years of lateral flow immunoassay technique applications: trends, challenges and future perspectives. Sensors. 2021;21(15):5185. https://doi.org/10.3390/s21155185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aydin S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides. 2015;72:4–15. https://doi.org/10.1016/j.peptides.2015.04.012.

    Article  CAS  PubMed  Google Scholar 

  8. Hosseini S, Vázquez-Villegas P, Rito-Palomares M, Martinez-Chapa SO. Advantages, disadvantages and modifications of conventional ELISA. Enzyme-Linked Immunosorbent Assay (ELISA): Springer; 2018. p. 67–115.

    Google Scholar 

  9. Lequin RM. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem. 2005;51(12):2415–8. https://doi.org/10.1373/clinchem.2005.051532.

    Article  CAS  PubMed  Google Scholar 

  10. Xu H, Mao X, Zeng Q, Wang S, Kawde A-N, Liu G. Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis. Anal Chem. 2009;81(2):669–75. https://doi.org/10.1021/ac8020592.

    Article  CAS  PubMed  Google Scholar 

  11. Mahmoudinobar F, Britton D, Montclare JK. Protein-based lateral flow assays for COVID-19 detection. Protein Eng Des Sel. 2021;34. https://doi.org/10.1093/protein/gzab010.

  12. Flower B, Brown JC, Simmons B, Moshe M, Frise R, Penn R, et al. Clinical and laboratory evaluation of SARS-CoV-2 lateral flow assays for use in a national COVID-19 seroprevalence survey. Thorax. 2020;75(12):1082–8. https://doi.org/10.1136/thoraxjnl-2020-215732.

    Article  PubMed  Google Scholar 

  13. Zhang W, Wei M, Carvalho WS, Serpe MJ. Enzyme-assisted polymer film degradation-enabled biomolecule sensing with poly (N-isopropylacrylamide)-based optical devices. Anal Chim Acta. 2018;999:139–43. https://doi.org/10.1016/j.aca.2017.11.012.

    Article  CAS  PubMed  Google Scholar 

  14. Nguyen V-T, Song S, Park S, Joo C. Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay. Biosens Bioelectron. 2020;152:112015. https://doi.org/10.1016/j.bios.2020.112015.

    Article  CAS  PubMed  Google Scholar 

  15. Posthuma-Trumpie GA, Korf J, van Amerongen A. Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem. 2009;393(2):569–82. https://doi.org/10.1007/s00216-008-2287-2.

    Article  CAS  PubMed  Google Scholar 

  16. Mai Z, Zhang J, Chen Y, Wang J, Hong X, Su Q, et al. A disposable fiber optic SPR probe for immunoassay. Biosens Bioelectron. 2019;144:111621. https://doi.org/10.1016/j.bios.2019.111621.

    Article  CAS  PubMed  Google Scholar 

  17. Chi L, Xu C, Li S, Wang X, Tang D, Xue F. In situ amplified QCM immunoassay for carcinoembryonic antigen with colorectal cancer using horseradish peroxidase nanospheres and enzymatic biocatalytic precipitation. Analyst. 2020;145(18):6111–8. https://doi.org/10.1039/D0AN01399D.

    Article  CAS  PubMed  Google Scholar 

  18. Warsinke A, Benkert A, Scheller F. Electrochemical immunoassays. Fresenius J Anal Chem. 2000;366(6):622–34. https://doi.org/10.1007/s002160051557.

    Article  CAS  PubMed  Google Scholar 

  19. Khan R, Arshad F, Hassan IU, Naikoo GA, Pedram MZ, Zedegan MS, et al. Advances in nanomaterial-based immunosensors for prostate cancer screening. Biomed Pharmacother. 2022;155:113649. https://doi.org/10.1016/j.biopha.2022.113649.

    Article  CAS  PubMed  Google Scholar 

  20. Gorris HH, Walt DR. Mechanistic aspects of horseradish peroxidase elucidated through single-molecule studies. J Am Chem Soc. 2009;131(17):6277–82. https://doi.org/10.1021/ja9008858.

    Article  CAS  PubMed  Google Scholar 

  21. Veitch NC. Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry. 2004;65(3):249–59. https://doi.org/10.1016/j.phytochem.2003.10.022.

    Article  CAS  PubMed  Google Scholar 

  22. Kindt JT, Luchansky MS, Qavi AJ, Lee S-H, Bailey RC. Subpicogram per milliliter detection of interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy. Anal Chem. 2013;85(22):10653–7. https://doi.org/10.1021/ac402972d.

    Article  CAS  PubMed  Google Scholar 

  23. Wei M, Gao Y, Li X, Serpe MJ. Stimuli-responsive polymers and their applications. Polym Chem. 2017;8(1):127–43. https://doi.org/10.1039/C6PY01585A.

    Article  CAS  Google Scholar 

  24. Shu T, Hu L, Shen Q, Jiang L, Zhang Q, Serpe MJ. Stimuli-responsive polymer-based systems for diagnostic applications. J Mater Chem B. 2020;8(32):7042–61. https://doi.org/10.1039/D0TB00570C.

    Article  CAS  PubMed  Google Scholar 

  25. Shu T, Shen Q, Zhang X, Serpe MJ. Stimuli-responsive polymer/nanomaterial hybrids for sensing applications. Analyst. 2020;145(17):5713–24. https://doi.org/10.1039/D0AN00686F.

    Article  CAS  PubMed  Google Scholar 

  26. Wang X, Qiu X, Wu C. Comparison of the coil-to-globule and the globule-to-coil transitions of a single poly (N-isopropylacrylamide) homopolymer chain in water. Macromolecules. 1998;31(9):2972–6. https://doi.org/10.1021/ma971873p.

    Article  CAS  Google Scholar 

  27. Pelton R. Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci. 2000;85(1):1–33. https://doi.org/10.1016/S0001-8686(99)00023-8.

    Article  CAS  PubMed  Google Scholar 

  28. Sorrell CD, Carter MC, Serpe MJ. A “paint-on” protocol for the facile assembly of uniform microgel coatings for color tunable etalon fabrication. ACS Appl Mater Interfaces. 2011;3(4):1140–7. https://doi.org/10.1021/am1012722.

    Article  CAS  PubMed  Google Scholar 

  29. Sorrell CD, Serpe MJ. Reflection order selectivity of color-tunable poly (N-isopropylacrylamide) microgel based etalons. Adv Mater. 2011;23(35):4088–92. https://doi.org/10.1002/adma.201101717.

    Article  CAS  PubMed  Google Scholar 

  30. Pereira Carvalho WS. Stimuli-responsive polymer-based colorimetric sensors [Ph.D. Dissertation]: University of Alberta, Edmonton, AB; 2020.

  31. Schild HG, Muthukumar M, Tirrell DA. Cononsolvency in mixed aqueous solutions of poly (N-isopropylacrylamide). Macromolecules. 1991;24(4):948–52. https://doi.org/10.1021/ma00004a022.

    Article  CAS  Google Scholar 

  32. Harder P, Grunze M, Dahint R, Whitesides G, Laibinis P. Molecular conformation in oligo (ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J Phys Chem B. 1998;102(2):426–36. https://doi.org/10.1021/jp972635z.

    Article  CAS  Google Scholar 

  33. Kingshott P, McArthur S, Thissen H, Castner DG, Griesser HJ. Ultrasensitive probing of the protein resistance of PEG surfaces by secondary ion mass spectrometry. Biomaterials. 2002;23(24):4775–85. https://doi.org/10.1016/S0142-9612(02)00228-4.

    Article  CAS  PubMed  Google Scholar 

  34. Weinryb I. The behavior of horseradish peroxidase at high hydrogen peroxide concentrations. Biochemistry. 1966;5(6):2003–8. https://doi.org/10.1021/bi00870a031.

    Article  CAS  PubMed  Google Scholar 

  35. Nicell JA, Wright H. A model of peroxidase activity with inhibition by hydrogen peroxide. Enzyme Microb Technol. 1997;21(4):302–10. https://doi.org/10.1016/S0141-0229(97)00001-X.

    Article  CAS  Google Scholar 

  36. Liu H, Lei Y. Dual amplification enabled counting based ultrasensitive enzyme-linked immunosorbent assay. Anal Chim Acta. 2022;1198:339510. https://doi.org/10.1016/j.aca.2022.339510.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Serpe.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2246 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Q., Fang, C. & Serpe, M.J. Microgel-based etalon immunoassay for IgG detection. Anal Bioanal Chem 415, 5645–5656 (2023). https://doi.org/10.1007/s00216-023-04834-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04834-0

Keywords

Navigation