Skip to main content
Log in

Gold nanocage-based lateral flow immunoassay for immunoglobulin G

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a gold nanocage-based lateral flow strip biosensor (LFSB) for low-cost and sensitive detection of IgG. This protein was used as a model analyte to demonstrate the proof-of-concept. The method combines the unique optical properties of gold nanocages (GNCs) with highly efficient chromatographic separation. A sandwich-type of immunoreactions occurs on the GNC-based LFSB which has the attractive features of avoiding multiple incubation, separation, and washing steps. The captured GNCs on the purple test zone and control zone of the biosensor are producing characteristic purple bands, and this enables IgG even to be visually detected. Quantitatation was accomplished by reading the intensities of the bands with a portable strip reader. The LFSB fabrication and assay parameters were optimized. The biosensor displays a linear response in the 0.5 to 50 ng⋅mL−1 IgG concentration range, and it has a 15 min assay time. The detection limit is 0.1 ng⋅mL−1 of IgG, which is 2.5 times lower than that when using a gold nanoparticle-based LFSB. In our perception, this assay has a wide potential for the detection of other proteins and species for which respective antibodies are available.

Gold nanocages have been used as a sensitive tag to prepare lateral flow strip biosensors for sensitive detection of immunoglobulin G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. Plotz CM, Singer JM (1956) The latex fixation test. I. Application to the serologic diagnosis of rheumatoid arthritis. Am J Med 21:888–892

    Article  CAS  Google Scholar 

  2. Kohn J (1968) An immunochromatographic technique. Immunol 15:863–865

    CAS  Google Scholar 

  3. Millipore Corp (1996) A short guide: developing immunochromatographic test strips

  4. Liu G, Lin YY, Wang J, Wu H, Wai CM, Lin Y (2007) Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip. Anal Chem 79:7644–7653

    Article  CAS  Google Scholar 

  5. Xu H, Mao X, Zeng Q, Wang S, Kawde AN, Liu G (2009a) Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis. Anal Chem 81:669–675. doi:10.1021/ac8020592

    Article  CAS  Google Scholar 

  6. Chen Y, Wang Z, Wang Z, Tang S, Zhu Y, Xiao X (2008) Rapid enzyme-linked immunosorbent assay and colloidal gold immunoassay for kanamycin and tobramycin in swine tissues. J Agric Food Chem 56:2944–2952. doi:10.1021/jf703602b

    Article  CAS  Google Scholar 

  7. Zhao Y, Zhang G, Liu Q, Teng M, Yang J, Wang J (2008) Development of a lateral flow colloidal gold immunoassay strip for the rapid detection of enrofloxacin residues. J Agric Food Chem 56:12138–12142. doi:10.1021/jf802648z

    Article  CAS  Google Scholar 

  8. Wang L, Wang S, Zhang J, Liu J, Zhang Y (2008) Enzyme-linked immunosorbent assay and colloidal gold immunoassay for sulphamethazine residues in edible animal foods: investigation of the effects of the analytical conditions and the sample matrix on assay performance. Anal Bioanal Chem 390:1619–1627. doi:10.1007/s00216-008-1836-z

    Article  CAS  Google Scholar 

  9. Zhang MZ, Wang MZ, Chen ZL, Fang JH, Fang MM, Liu J, Yu XP (2009) Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of clenbuterol and ractopamine in swine urine. Anal Bioanal Chem 395:2591–2599. doi:10.1007/s00216-009-3181-2

    Article  CAS  Google Scholar 

  10. Guo Y, Ngom B, Le T, Jin X, Wang L, Shi D, Wang X, Bi D (2010) Utilizing three monoclonal antibodies in the development of an immunochromatographic assay for simultaneous detection of sulfamethazine, sulfadiazine, and sulfaquinoxaline residues in egg and chicken muscle. Anal Chem 82:7550–7555. doi:10.1021/ac101020y

    Article  CAS  Google Scholar 

  11. He Y, Zeng K, Gurung AS, Baloda M, Xu H, Zhang X, Liu G (2010) Visual detection of single-nucleotide polymorphism with hairpin oligonucleotide-functionalized gold nanoparticles. Anal Chem 82:7169–7177. doi:10.1021/ac101275s

    Article  CAS  Google Scholar 

  12. Zheng MZ, Richard JL, Binder J (2006) A review of rapid methods for the analysis of mycotoxins. Mycopathologia 161:261–273

    Article  CAS  Google Scholar 

  13. Mao X, Ma Y, Zhang A, Zhang L, Zeng L, Liu G (2009) Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem 81:1660–1668. doi:10.1021/ac8024653

    Article  CAS  Google Scholar 

  14. Shyu RH, Shyu HF, Liu HW, Tang SS (2002) Colloidal gold-based immunochromatographic assay for detection of ricin. Toxicon 40:255–258

    Article  CAS  Google Scholar 

  15. Lou SC, Patel C, Ching S, Gordon J (1993) One-step competitive immunochromatographic assay for semiquantitative determination of lipoprotein (a) in plasma. Clin Chem 39:619–624

    CAS  Google Scholar 

  16. Lönnberg M, Carlsson J (2001) Quantitative detection in the attomole range for immunochromatographic tests by means of a flatbed scanner. Anal Biochem 293:224–231

    Article  Google Scholar 

  17. Liu C, Jia Q, Yang C, Qiao R, Jing L, Wang L, Xu C, Gao M (2011) Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents. Anal Chem 83:6778–6784. doi:10.1021/ac201462d

    Article  CAS  Google Scholar 

  18. Birnbaum S, Udén C, Magnusson CG, Nilsson S (1992) Latex-based thin-layer immunoaffinity chromatography for quantitation of protein analytes. Anal Biochem 206:168–171

    Article  CAS  Google Scholar 

  19. Gussenhoven GC, van der Hoorn MA, Goris MG, Terpstra WJ, Hartskeerl RA, Mol BW, van Ingen CW, Smits HL (1997) LEPTO dipstick, a dipstick assay for detection of Leptospira-specific immunoglobulin M antibodies in human sera. J Clin Microbiol 35:92–97

    CAS  Google Scholar 

  20. Zou Z, Du D, Wang J, Smith JN, Timchalk C, Li Y, Lin Y (2010) Quantum dot-based immunochromatographic fluorescent biosensor for biomonitoring trichloropyridinol, a biomarker of exposure to chlorpyrifos. Anal Chem 82:5125–5133. doi:10.1021/ac100260m

    Article  CAS  Google Scholar 

  21. Zhong Y, Chen Y, Yao L, Zhao D, Zheng L, Liu G, Ye YW, Chen W (2016) Gold nanoparticles based lateral flow immunoassay with largely amplified sensitivity for rapid melamine screening. Microchim Acta 183:1989–1994

    Article  CAS  Google Scholar 

  22. Wiriyachaiporn N, Maneeprakorn W, Apiwat C, Dharakul T (2015) Dual-layered and double-targeted nanogold based lateral flow immunoassay for influenza virus. Microchim Acta 182:85–93

    Article  CAS  Google Scholar 

  23. Sun Y, Mayers B, Xia Y (2003) Metal nanostructures with hollow interiors. Adv Mater 15:641–646. doi:10.1002/adma.200301639Y

    Article  CAS  Google Scholar 

  24. Cobley CM, Campbell DJ, Xia Y (2008) Tailoring the optical and catalytic properties of gold-silver Nanoboxes and nanocages by introducing palladium. Adv Mater 20:748–752

    Article  CAS  Google Scholar 

  25. Mahmoud MA, El-Sayed MA (2009) Aggregation of gold nanoframes reduces, rather than enhances, SERS efficiency due to the trade-off of the inter- and intraparticle plasmonic fields. Nano Lett 9:3025–3031. doi:10.1021/nl901501x

    Article  CAS  Google Scholar 

  26. Portney NG, Ozkan M (2006) Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 384:620–630

    Article  CAS  Google Scholar 

  27. Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, Xia Y (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41:1587–1595. doi:10.1021/ar800018v

    Article  CAS  Google Scholar 

  28. Skrabalak SE, Au L, Li X, Xia Y (2007a) Facile synthesis of Ag nanocubes and a nanocages. Nat Protoc 2:2182–2190

    Article  CAS  Google Scholar 

  29. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 227:1078–1081

    Article  Google Scholar 

  30. Skrabalak SE, Chen J, Au L, Lu X, Li X, Xia Y (2007b) Gold nanocages for biomedical applications. Adv Mater 19:3177–3184

    Article  CAS  Google Scholar 

  31. Skrabalak SE, Au L, Lu X, Li X, Xia Y (2007c) Gold nanocages for cancer detection and treatment. Nanomed 2:657–668

    Article  CAS  Google Scholar 

  32. Zhang Y, Sun Y, Liu Z, Xu F, Cui K, Shi Y, Wen Z, Li Z (2011) Au nanocages for highly sensitive and selective detection of H2O2. J Electroana Chem 656:23–28. doi:10.1016/j.jelechem.2011.01.037

    Article  CAS  Google Scholar 

  33. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67:735–743. doi:10.1021/ac00100a008

    Article  CAS  Google Scholar 

  34. Peng Z, Chen Z, Jiang J, Zhang X, Shen G, Yu R (2007) A novel immunoassay based on the dissociation of immunocomplex and fluorescence quenching by gold nanoparticles. Anal Chim Acta 58:340–344

    Google Scholar 

  35. Xu H, Chen J, Birrenkott J, Zhao JX, Takalkar S, Baryeh K, Liu G (2014) Gold-nanoparticle-decorated silica Nanorods for sensitive visual detection of proteins. Anal Chem 86:7351–7359

    Article  CAS  Google Scholar 

  36. Zhang D, Sun Y, Wu Q, Ma P, Zhang H, Wang Y, Song D (2016) Enhancing sensitivity of surface plasmon resonance biosensor by Ag nanocubes/chitosan composite for the detection of mouse IgG. Talanta 146:364–368

    Article  CAS  Google Scholar 

  37. Wang S, Chen Z, Chen L, Choo J (2016) Naked-eye sensitive ELISA-like assay based on gold-enhanced peroxidase-like immunogold activity. Anal Bioanal Chem 408:1015–1022

    Article  CAS  Google Scholar 

  38. Lopez A, Lovato F, Oh SH, Lai YH, Filbrun S, Driskell EA, Driskell JD (2016) SERS immunoassay based on the capture and concentration of antigen-assembled gold nanoparticles. Talanta 146:388–393

    Article  CAS  Google Scholar 

  39. Nunes Pauli GE, de la Escosura-Muñiz A, Parolo C, Helmuth Bechtold I, Merkoçi A (2016) Lab-in-a-syringe using gold nanoparticles for rapid immunosensing of protein biomarkers. Lab Chip 15:399–405

    Article  Google Scholar 

  40. Li H, Zhao M, Liu W, Chu W, Guo Y (2016) Polydimethylsiloxane microfluidic chemiluminescence immunodevice with the signal amplification strategy for sensitive detection of human immunoglobin G. Talanta 147:430–436

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was support by the National Institute of Health, Centers of Biomedical Research Excellent (NIH, COBRE, Grant number: 1P20GM109024-01A1). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. Y. Yang acknowledges the National Natural Science Foundation of China (Grant No. 21465026,21165023) and the Program for Changjiang Scholars and Innovative Research Team in University, PCSIRT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Liu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 442 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Ozsoz, M. & Liu, G. Gold nanocage-based lateral flow immunoassay for immunoglobulin G. Microchim Acta 184, 2023–2029 (2017). https://doi.org/10.1007/s00604-017-2176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2176-5

Keywords

Navigation