Skip to main content
Log in

Characterizing RNA modifications in the central nervous system and single cells by RNA sequencing and liquid chromatography–tandem mass spectrometry techniques

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Post-transcriptional modifications to RNA constitute a newly appreciated layer of translation regulation in the central nervous system (CNS). The identity, stoichiometric quantity, and sequence position of these unusual epitranscriptomic marks are central to their function, making analytical methods that are capable of accurate and reproducible measurements paramount to the characterization of the neuro-epitranscriptome. RNA sequencing–based methods and liquid chromatography–tandem mass spectrometry (LC–MS/MS) techniques have been leveraged to provide an early glimpse of the landscape of RNA modifications in bulk CNS tissues. However, recent advances in sample preparation, separations, and detection methods have revealed that individual cells display remarkable heterogeneity in their RNA modification profiles, raising questions about the prevalence and function of cell-specific distributions of post-transcriptionally modified nucleosides in the brain. In this Trends article, we present an overview of RNA sequencing and LC–MS/MS methodologies for the analysis of RNA modifications in the CNS with special emphasis on recent advancements in techniques that facilitate single-cell and subcellular detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from reference [24]

Fig. 2

Reproduced with permission from reference [26]

Fig. 3

Reproduced with permission from reference [37]

Similar content being viewed by others

References

  1. Boccaletto P, Stefaniak F, Ray A, Cappannini A, Mukherjee S, Purta E, Kurkowska M, Shirvanizadeh N, Destefanis E, Groza P, Avşar G, Romitelli A, Pir P, Dassi E, Conticello SG, Aguilo F, Bujnicki JM. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 2022;50:D231–5. https://doi.org/10.1093/nar/gkab1083.

    Article  CAS  PubMed  Google Scholar 

  2. Jackman JE, Alfonzo JD. Transfer RNA modifications: nature’s combinatorial chemistry playground. WIREs RNA. 2013;4:35–48. https://doi.org/10.1002/wrna.1144.

    Article  CAS  PubMed  Google Scholar 

  3. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang Y-G, He C. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7:885–7. https://doi.org/10.1038/nchembio.687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jühling F, Mörl M, Hartmann RK, Sprinzl M, Stadler PF, Pütz J. tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res. 2009;37:D159–62. https://doi.org/10.1093/nar/gkn772.

    Article  CAS  PubMed  Google Scholar 

  5. Leighton LJ, Bredy TW. Functional interplay between small non-coding RNAs and RNA modification in the brain. Non-Coding RNA. 2018;4:15. https://doi.org/10.3390/ncrna4020015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chan CTY, Pang YLJ, Deng W, Babu IR, Dyavaiah M, Begley TJ, Dedon PC. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat Commun. 2012;3:1–9. https://doi.org/10.1038/ncomms1938.

    Article  CAS  Google Scholar 

  7. Widagdo J, Zhao Q-Y, Kempen M-J, Tan MC, Ratnu VS, Wei W, Leighton L, Spadaro PA, Edson J, Anggono V, Bredy TW. Experience-dependent accumulation of N6-methyladenosine in the prefrontal cortex is associated with memory processes in mice. J Neurosci. 2016;36:6771–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Flamand MN, Meyer KD. m6A and YTHDF proteins contribute to the localization of select neuronal mRNAs. Nucleic Acids Res. 2022;50:4464–83. https://doi.org/10.1093/nar/gkac251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Helm M, Motorin Y. Detecting RNA modifications in the epitranscriptome: predict and validate. Nat Rev Genet. 2017;18:275–91. https://doi.org/10.1038/nrg.2016.169.

    Article  CAS  PubMed  Google Scholar 

  10. Chang M, Lv H, Zhang W, Ma C, He X, Zhao S, Zhang Z-W, Zeng Y-X, Song S, Niu Y, Tong W-M. Region-specific RNA m6A methylation represents a new layer of control in the gene regulatory network in the mouse brain. Open Biol. 2017;7:170166. https://doi.org/10.1098/rsob.170166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rubakhin SS, Romanova EV, Nemes P, Sweedler JV. Profiling metabolites and peptides in single cells. Nat Methods. 2011;8:S20–9. https://doi.org/10.1038/nmeth.1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R, Zettel M, Coleman P. Analysis of gene expression in single live neurons. Proc Natl Acad Sci. 1992;89:3010–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Poulin J-F, Tasic B, Hjerling-Leffler J, Trimarchi JM, Awatramani R. Disentangling neural cell diversity using single-cell transcriptomics. Nat Neurosci. 2016;19:1131–41. https://doi.org/10.1038/nn.4366.

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki T. The expanding world of tRNA modifications and their disease relevance. Nat Rev Mol Cell Biol. 2021;22:375–92. https://doi.org/10.1038/s41580-021-00342-0.

    Article  CAS  PubMed  Google Scholar 

  15. Su D, Chan CTY, Gu C, Lim KS, Chionh YH, McBee ME, Russell BS, Babu IR, Begley TJ, Dedon PC. Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry. Nat Protoc. 2014;9:828–41. https://doi.org/10.1038/nprot.2014.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karlsborn T, Tükenmez H, Chen C, Byström AS. Familial dysautonomia (FD) patients have reduced levels of the modified wobble nucleoside mcm5s2U in tRNA. Biochem Biophys Res Commun. 2014;454:441–5. https://doi.org/10.1016/j.bbrc.2014.10.116.

    Article  CAS  PubMed  Google Scholar 

  17. Arrondel C, Missoury S, Snoek R, Patat J, Menara G, Collinet B, Liger D, Durand D, Gribouval O, Boyer O, Buscara L, Martin G, Machuca E, Nevo F, Lescop E, Braun DA, Boschat A-C, Sanquer S, Guerrera IC, Revy P, Parisot M, Masson C, Boddaert N, Charbit M, Decramer S, Novo R, Macher M-A, Ranchin B, Bacchetta J, Laurent A, Collardeau-Frachon S, van Eerde AM, Hildebrandt F, Magen D, Antignac C, van Tilbeurgh H, Mollet G. Defects in t6A tRNA modification due to GON7 and YRDC mutations lead to Galloway-Mowat syndrome. Nat Commun. 2019;10:3967. https://doi.org/10.1038/s41467-019-11951-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramos J, Fu D. The emerging impact of tRNA modifications in the brain and nervous system. BBA-Gene Regul Mech. 2019;1862:412–28. https://doi.org/10.1016/j.bbagrm.2018.11.007.

    Article  CAS  Google Scholar 

  19. Motorin Y, Helm M. RNA nucleotide methylation. WIREs RNA. 2011;2:611–31. https://doi.org/10.1002/wrna.79.

    Article  CAS  PubMed  Google Scholar 

  20. Birkedal U, Christensen-Dalsgaard M, Krogh N, Sabarinathan R, Gorodkin J, Nielsen H. Profiling of ribose methylations in RNA by high-throughput sequencing. Angew Chem. 2015;127:461–5. https://doi.org/10.1002/ange.201408362.

    Article  Google Scholar 

  21. Erales J, Marchand V, Panthu B, Gillot S, Belin S, Ghayad SE, Garcia M, Laforêts F, Marcel V, Baudin-Baillieu A, Bertin P, Couté Y, Adrait A, Meyer M, Therizols G, Yusupov M, Namy O, Ohlmann T, Motorin Y, Catez F, Diaz J-J. Evidence for rRNA 2′-O-methylation plasticity: control of intrinsic translational capabilities of human ribosomes. Proc Natl Acad Sci. 2017;114:12934–9. https://doi.org/10.1073/pnas.1707674114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hebras J, Krogh N, Marty V, Nielsen H, Cavaillé J. Developmental changes of rRNA ribose methylations in the mouse. RNA Biol. 2020;17:150–64. https://doi.org/10.1080/15476286.2019.1670598.

    Article  CAS  PubMed  Google Scholar 

  23. Basanta-Sanchez M, Temple S, Ansari SA, D’Amico A, Agris PF. Attomole quantification and global profile of RNA modifications: epitranscriptome of human neural stem cells. Nucleic Acids Res. 2016;44:e26–e26. https://doi.org/10.1093/nar/gkv971.

    Article  CAS  PubMed  Google Scholar 

  24. Clark KD, Lee C, Gillette R, Sweedler JV. Characterization of neuronal RNA modifications during non-associative learning in aplysia reveals key roles for tRNAs in behavioral sensitization. ACS Cent Sci. 2021;7:1183–90. https://doi.org/10.1021/acscentsci.1c00351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kellner S, Ochel A, Thüring K, Spenkuch F, Neumann J, Sharma S, Entian K-D, Schneider D, Helm M. Absolute and relative quantification of RNA modifications via biosynthetic isotopomers. Nucleic Acids Res. 2014;42:e142–e142. https://doi.org/10.1093/nar/gku733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Borland K, Diesend J, Ito-Kureha T, Heissmeyer V, Hammann C, Buck AH, Michalakis S, Kellner S. Production and application of stable isotope-labeled internal standards for RNA modification analysis. Genes. 2019;10:26. https://doi.org/10.3390/genes10010026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xie Y, Janssen KA, Scacchetti A, Porter EG, Lin Z, Bonasio R, Garcia BA. Permethylation of ribonucleosides provides enhanced mass spectrometry quantification of post-transcriptional RNA modifications. Anal Chem. 2022;94:7246–54. https://doi.org/10.1021/acs.analchem.2c00471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lobue PA, Yu N, Jora M, Abernathy S, Limbach PA. Improved application of RNAModMapper – an RNA modification mapping software tool – for analysis of liquid chromatography tandem mass spectrometry (LC-MS/MS) data. Methods. 2019;156:128–38. https://doi.org/10.1016/j.ymeth.2018.10.012.

    Article  CAS  PubMed  Google Scholar 

  29. Higa-Nakamine S, Suzuki T, Uechi T, Chakraborty A, Nakajima Y, Nakamura M, Hirano N, Suzuki T, Kenmochi N. Loss of ribosomal RNA modification causes developmental defects in zebrafish. Nucleic Acids Res. 2012;40:391–8. https://doi.org/10.1093/nar/gkr700.

    Article  CAS  PubMed  Google Scholar 

  30. Leismann J, Spagnuolo M, Pradhan M, Wacheul L, Vu MA, Musheev M, Mier P, Andrade-Navarro MA, Graille M, Niehrs C, Lafontaine DL, Roignant J-Y. The 18S ribosomal RNA m6A methyltransferase Mettl5 is required for normal walking behavior in Drosophila. EMBO Rep. 2020;21:e49443. https://doi.org/10.15252/embr.201949443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Clark KD, Philip MC, Tan Y, Sweedler JV. Biphasic liquid microjunction extraction for profiling neuronal RNA modifications by liquid chromatography–tandem mass spectrometry. Anal Chem. 2020;92:12647–55. https://doi.org/10.1021/acs.analchem.0c02830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Edström J-E. Separation and determination of purines and pyrimidine nucleotides in picogram amounts. Biochim Biophys Acta. 1956;22:378–88. https://doi.org/10.1016/0006-3002(56)90166-4.

    Article  PubMed  Google Scholar 

  33. Mackler SA, Brooks BP, Eberwine JH. Stimulus-induced coordinate changes in mRNA abundance in single postsynaptic hippocampal CA1 neurons. Neuron. 1992;9:539–48. https://doi.org/10.1016/0896-6273(92)90191-F.

    Article  CAS  PubMed  Google Scholar 

  34. Huang W, Qi C-B, Lv S-W, Xie M, Feng Y-Q, Huang W-H, Yuan B-F. Determination of DNA and RNA methylation in circulating tumor cells by mass spectrometry. Anal Chem. 2016;88:1378–84. https://doi.org/10.1021/acs.analchem.5b03962.

    Article  CAS  PubMed  Google Scholar 

  35. Clark KD, Rubakhin SS, Sweedler JV. Single-neuron RNA modification analysis by mass spectrometry: characterizing RNA modification patterns and dynamics with single-cell resolution. Anal Chem. 2021;93:14537–44. https://doi.org/10.1021/acs.analchem.1c03507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Clark KD, Rubakhin SS, Sweedler JV. Characterizing RNA modifications in single neurons using mass spectrometry. J Vis Exp. 2022;63940. https://doi.org/10.3791/63940

  37. Tegowski M, Flamand MN, Meyer KD. scDART-seq reveals distinct m6A signatures and mRNA methylation heterogeneity in single cells. Mol Cell. 2022;82:868-878.e10. https://doi.org/10.1016/j.molcel.2021.12.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Holt CE, Martin KC, Schuman EM. Local translation in neurons: visualization and function. Nat Struct Mol Biol. 2019;26:557–66. https://doi.org/10.1038/s41594-019-0263-5.

    Article  CAS  PubMed  Google Scholar 

  39. Yu J, Chen M, Huang H, Zhu J, Song H, Zhu J, Park J, Ji S-J. Dynamic m6A modification regulates local translation of mRNA in axons. Nucleic Acids Res. 2018;46:1412–23. https://doi.org/10.1093/nar/gkx1182.

    Article  CAS  PubMed  Google Scholar 

  40. Merkurjev D, Hong W-T, Iida K, Oomoto I, Goldie BJ, Yamaguti H, Ohara T, Kawaguchi S, Hirano T, Martin KC, Pellegrini M, Wang DO. Synaptic N 6 -methyladenosine (m 6 A) epitranscriptome reveals functional partitioning of localized transcripts. Nat Neurosci. 2018;21:1004–14. https://doi.org/10.1038/s41593-018-0173-6.

    Article  CAS  PubMed  Google Scholar 

  41. Lacoux C, Di Marino D, Pilo Boyl P, Zalfa F, Yan B, Ciotti MT, Falconi M, Urlaub H, Achsel T, Mougin A, Caizergues-Ferrer M, Bagni C. BC1-FMRP interaction is modulated by 2′-O-methylation: RNA-binding activity of the tudor domain and translational regulation at synapses. Nucleic Acids Res. 2012;40:4086–96. https://doi.org/10.1093/nar/gkr1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rozhdestvensky TS, Crain PF, Brosius J. Isolation and posttranscriptional modification analysis of native BC1 RNA from mouse brain. RNA Biol. 2007;4:11–5. https://doi.org/10.4161/rna.4.1.4306.

    Article  CAS  PubMed  Google Scholar 

  43. Sarin LP, Kienast SD, Leufken J, Ross RL, Dziergowska A, Debiec K, Sochacka E, Limbach PA, Fufezan C, Drexler HCA, Leidel SA. Nano LC-MS using capillary columns enables accurate quantification of modified ribonucleosides at low femtomol levels. RNA. 2018;24:1403–17. https://doi.org/10.1261/rna.065482.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo C, Xie C, Chen Q, Cao X, Guo M, Zheng S, Wang Y. A novel malic acid-enhanced method for the analysis of 5-methyl-2′-deoxycytidine, 5-hydroxymethyl-2′-deoxycytidine, 5-methylcytidine and 5-hydroxymethylcytidine in human urine using hydrophilic interaction liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2018;1034:110–8. https://doi.org/10.1016/j.aca.2018.06.081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dai Y, Qi C-B, Feng Y, Cheng Q-Y, Liu F-L, Cheng M-Y, Yuan B-F, Feng Y-Q. Sensitive and simultaneous determination of uridine thiolation and hydroxylation modifications in eukaryotic RNA by derivatization coupled with mass spectrometry analysis. Anal Chem. 2021;93:6938–46. https://doi.org/10.1021/acs.analchem.0c04630.

    Article  CAS  PubMed  Google Scholar 

  46. Choi SB, Polter AM, Nemes P. Patch-clamp proteomics of single neurons in tissue using electrophysiology and subcellular capillary electrophoresis mass spectrometry. Anal Chem. 2022;94:1637–44. https://doi.org/10.1021/acs.analchem.1c03826.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang L, Khattar N, Kemenes I, Kemenes G, Zrinyi Z, Pirger Z, Vertes A. Subcellular peptide localization in single identified neurons by capillary microsampling mass spectrometry. Sci Rep. 2018;8:12227. https://doi.org/10.1038/s41598-018-29704-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu M, Pan R, Zhu Y, Jiang D, Chen H-Y. Molecular profiling of single axons and dendrites in living neurons using electrosyringe-assisted electrospray mass spectrometry. Analyst. 2019;144:954–60. https://doi.org/10.1039/C8AN00483H.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Clark.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, A., Clark, K.D. Characterizing RNA modifications in the central nervous system and single cells by RNA sequencing and liquid chromatography–tandem mass spectrometry techniques. Anal Bioanal Chem 415, 3739–3748 (2023). https://doi.org/10.1007/s00216-023-04604-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04604-y

Keywords

Navigation