Skip to main content

Advertisement

Log in

Recent developments in organ-on-a-chip technology for cardiovascular disease research

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cardiovascular diseases are a group of heart and blood vessel disorders which remain a leading cause of morbidity and mortality worldwide. Currently, cardiovascular disease research commonly depends on in vivo rodent models and in vitro human cell culture models. Despite their widespread use in cardiovascular disease research, there are some long-standing limitations: animal models often fail to faithfully mimic human response, while traditional cell models ignore the in vivo microenvironment, intercellular communications, and tissue–tissue interactions. The convergence of microfabrication and tissue engineering has given rise to organ-on-a-chip technologies. The organ-on-a-chip is a microdevice containing microfluidic chips, cells, and extracellular matrix to reproduce the physiological processes of a certain part of the human body, and is nowadays considered a promising bridge between in vivo models and in vitro 2D or 3D cell culture models. Considering the difficulty in obtaining human vessel and heart samples, the development of vessel-on-a-chip and heart-on-a-chip systems can guide cardiovascular disease research in the future. In this review, we elaborate methods and materials to fabricate organ-on-a-chip systems and summarize the construction of vessel and heart chips. The construction of vessels-on-a-chip must consider the cyclic mechanical stretch and fluid shear stress, while hemodynamic forces and cardiomyocyte maturation are key factors in building hearts-on-a-chip. We also introduce the application of organs-on-a-chip in cardiovascular disease study.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American college of cardiology/American heart association task force on clinical practice guidelines. Circulation. 2019;140(11):e596–646.

    PubMed  PubMed Central  Google Scholar 

  2. Cosselman KE, Navas-Acien A, Kaufman JD. Environmental factors in cardiovascular disease. Nat Rev Cardiol. 2015;12(11):627–42.

    CAS  PubMed  Google Scholar 

  3. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al. Heart disease and stroke statistics—2022 update: a report from the American heart association. Circulation. 2022;145(8):e153–639.

    PubMed  Google Scholar 

  4. van der Meer AD, van den Berg A. Organs-on-chips: breaking the in vitro impasse. Integr Biol. 2012;4(5):461–70.

    Google Scholar 

  5. Ronaldson-Bouchard K, Vunjak-Novakovic G. Organs-on-a-chip: a fast track for engineered human tissues in drug development. Cell Stem Cell. 2018;22(3):310–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Huh D, Kim HJ, Fraser JP, Shea DE, Khan M, Bahinski A, et al. Microfabrication of human organs-on-chips. Nat Protoc. 2013;8(11):2135–57.

    CAS  PubMed  Google Scholar 

  8. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA. 2013;110(9):3507–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res. 2014;6(2):114–8.

    PubMed  PubMed Central  Google Scholar 

  10. Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA. Organs-on-chips: into the next decade. Nat Rev Drug Discovery. 2021;20(5):345–61.

    CAS  PubMed  Google Scholar 

  11. Park SE, Georgescu A, Huh D. Organoids-on-a-chip. Science. 2019;364(6444):960–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ziółkowska K, Kwapiszewski R, Brzózka Z. Microfluidic devices as tools for mimicking the in vivo environment. New J Chem. 2011;35(5):979–90.

    Google Scholar 

  13. Inamdar NK, Borenstein JT. Microfluidic cell culture models for tissue engineering. Curr Opin Biotechnol. 2011;22(5):681–9.

    CAS  PubMed  Google Scholar 

  14. Unagolla JM, Jayasuriya AC. Hydrogel-based 3D bioprinting: a comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl Mater Today. 2020;18:100479.

    PubMed  Google Scholar 

  15. Verhulsel M, Vignes M, Descroix S, Malaquin L, Vignjevic DM, Viovy J-L. A review of microfabrication and hydrogel engineering for micro-organs on chips. Biomaterials. 2014;35(6):1816–32.

    CAS  PubMed  Google Scholar 

  16. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85.

    CAS  PubMed  Google Scholar 

  17. Qin D, Xia Y, Whitesides GM. Soft lithography for micro- and nanoscale patterning. Nat Protoc. 2010;5(3):491–502.

    CAS  PubMed  Google Scholar 

  18. Ahadian S, Civitarese R, Bannerman D, Mohammadi MH, Lu R, Wang E, et al. Organ-on-a-chip platforms: a convergence of advanced materials, cells, and microscale technologies. Adv Healthcare Mater. 2018;7(2):1700506.

    Google Scholar 

  19. Torino S, Corrado B, Iodice M, Coppola G. PDMS-based microfluidic devices for cell culture. Inventions. 2018;3(3):65.

    Google Scholar 

  20. Alom Ruiz S, Chen CS. Microcontact printing: a tool to pattern. Soft Matter. 2007;3(2):168–77.

    PubMed  Google Scholar 

  21. Yu C, Shi K, Liu Y, Ning J, Liu J. Facile Fluorine-free Finishing for Excellent Water Repellency of Cotton Fabric and Optimization Using Response Surface Methodology. J Nat Fibers. 2022;19(15):9945–58.

    CAS  Google Scholar 

  22. Menon NV, Tay HM, Wee SN, Li KHH, Hou HW. Micro-engineered perfusable 3D vasculatures for cardiovascular diseases. Lab Chip. 2017;17(17):2960–8.

    CAS  PubMed  Google Scholar 

  23. Cho H, Kim H-Y, Kang JY, Kim TS. How the capillary burst microvalve works. J Colloid Interface Sci. 2007;306(2):379–85.

    CAS  PubMed  Google Scholar 

  24. Park JY, Jang J, Kang H-W. 3D Bioprinting and its application to organ-on-a-chip. Microelectron Eng. 2018;200:1–11.

    CAS  Google Scholar 

  25. Bhattacharjee N, Urrios A, Kang S, Folch A. The upcoming 3D-printing revolution in microfluidics. Lab Chip. 2016;16(10):1720–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang X, Jiang M, Zhou Z, Gou J, Hui D. 3D printing of polymer matrix composites: a review and prospective. Composites, Part B. 2017;110:442–58.

    CAS  Google Scholar 

  27. Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv. 2011;29(6):739–67.

    CAS  PubMed  Google Scholar 

  28. Halldorsson S, Lucumi E, Gómez-Sjöberg R, Fleming RMT. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron. 2015;63:218–31.

    CAS  PubMed  Google Scholar 

  29. Hull SM, Brunel LG, Heilshorn SC. 3D bioprinting of cell-laden hydrogels for improved biological functionality. Adv Mater. 2022;34(2):2103691.

    CAS  Google Scholar 

  30. Zhang YS, Arneri A, Bersini S, Shin S-R, Zhu K, Goli-Malekabadi Z, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kjeldsen SE. Hypertension and cardiovascular risk: general aspects. Pharmacol Res. 2018;129:95–9.

    PubMed  Google Scholar 

  32. Laurent S, Boutouyrie P. The structural factor of hypertension. Circ Res. 2015;116(6):1007–21.

    CAS  PubMed  Google Scholar 

  33. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25.

    CAS  PubMed  Google Scholar 

  34. Ribas J, Zhang YS, Pitrez PR, Leijten J, Miscuglio M, Rouwkema J, et al. Biomechanical Strain Exacerbates Inflammation on a Progeria-on-a-Chip Model. Small. 2017;13(15):1603737.

    Google Scholar 

  35. Zheng W, Huang R, Jiang B, Zhao Y, Zhang W, Jiang X. An early-stage atherosclerosis research model based on microfluidics. Small. 2016;12(15):2022–34.

    CAS  PubMed  Google Scholar 

  36. van Engeland NCA, Pollet AMAO, den Toonder JMJ, Bouten CVC, Stassen OMJA, Sahlgren CM. A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions. Lab Chip. 2018;18(11):1607–20.

    PubMed  PubMed Central  Google Scholar 

  37. Choi JS, Piao Y, Seo TS. Circumferential alignment of vascular smooth muscle cells in a circular microfluidic channel. Biomaterials. 2014;35(1):63–70.

    CAS  PubMed  Google Scholar 

  38. Choi JS, Seo TS. Orthogonal co-cultivation of smooth muscle cell and endothelial cell layers to construct in vivo-like vasculature. Biomicrofluidics. 2019;13(1):014115.

    PubMed  PubMed Central  Google Scholar 

  39. Sazonova OV, Isenberg BC, Herrmann J, Lee KL, Purwada A, Valentine AD, et al. Extracellular matrix presentation modulates vascular smooth muscle cell mechanotransduction. Matrix Biol. 2015;41:36–43.

    CAS  PubMed  Google Scholar 

  40. Su C, Menon NV, Xu X, Teo YR, Cao H, Dalan R, et al. A novel human arterial wall-on-a-chip to study endothelial inflammation and vascular smooth muscle cell migration in early atherosclerosis. Lab Chip. 2021;21(12):2359–71.

    CAS  PubMed  Google Scholar 

  41. Tovar-Lopez F, Thurgood P, Gilliam C, Nguyen N, Pirogova E, Khoshmanesh K, et al. A microfluidic system for studying the effects of disturbed flow on endothelial cells. Front Bioeng Biotechnol. 2019;7:81.

    PubMed  PubMed Central  Google Scholar 

  42. Costa PF, Albers HJ, Linssen JEA, Middelkamp HHT, van der Hout L, Passier R, et al. Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data. Lab Chip. 2017;17(16):2785–92.

    CAS  PubMed  Google Scholar 

  43. Venugopal Menon N, Tay HM, Pang KT, Dalan R, Wong SC, Wang X, et al. A tunable microfluidic 3D stenosis model to study leukocyte-endothelial interactions in atherosclerosis. APL Bioeng. 2018;2(1):016103.

    PubMed  PubMed Central  Google Scholar 

  44. Bednarowicz KA, Kurpisz M. Biological bases of cardiac function and the pro-regenerative potential of stem cells in the treatment of myocardial disorder. In: Brzozka Z, Jastrzebska E, editors. Cardiac Cell Culture Technologies: Microfluidic and On-Chip Systems. Cham: Springer International Publishing; 2018. p. 79–108.

    Google Scholar 

  45. Ferdinandy P, Baczkó I, Bencsik P, Giricz Z, Görbe A, Pacher P, et al. Definition of hidden drug cardiotoxicity: paradigm change in cardiac safety testing and its clinical implications. Eur Heart J. 2019;40(22):1771–7.

    CAS  PubMed  Google Scholar 

  46. Gerdes AM. Chapter 5 - Cardiomyocyte ultrastructure. In: Hill JA, Olson EN, editors. Muscle. Boston/Waltham: Academic Press; 2012. p. 47–55.

    Google Scholar 

  47. Guo Y, Pu WT. Cardiomyocyte maturation. Circ Res. 2020;126(8):1086–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc. 2013;8(1):162–75.

    CAS  PubMed  Google Scholar 

  49. Hardin-Young J, Teumer J, Ross RN, Parenteau NL. Chapter 23 - Approaches to transplanting engineered cells and tissues. In: Lanza RP, Langer R, Vacanti J, editors. Principles of Tissue Engineering (Second Edition). San Diego: Academic Press; 2000. p. 281-291.

  50. Liu H, Bolonduro OA, Hu N, Ju J, Rao AA, Duffy BM, et al. Heart-on-a-chip model with integrated extra- and intracellular bioelectronics for monitoring cardiac electrophysiology under acute hypoxia. Nano Lett. 2020;20(4):2585–93.

    CAS  PubMed  Google Scholar 

  51. Alonzo M, El Khoury R, Nagiah N, Thakur V, Chattopadhyay M, Joddar B. 3D biofabrication of a cardiac tissue construct for sustained longevity and function. ACS Appl Mater Interfaces. 2022;14(19):21800–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ren L, Liu W, Wang Y, Wang J-C, Tu Q, Xu J, et al. Investigation of hypoxia-Induced myocardial injury dynamics in a tissue interface mimicking microfluidic device. Anal Chem. 2013;85(1):235–44.

    CAS  PubMed  Google Scholar 

  53. Claycomb WC, Lanson NA, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA. 1998;95(6):2979–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kimes BW, Brandt BL. Properties of a clonal muscle cell line from rat heart. Exp Cell Res. 1976;98(2):367–81.

    CAS  PubMed  Google Scholar 

  55. Davidson MM, Nesti C, Palenzuela L, Walker WF, Hernandez E, Protas L, et al. Novel cell lines derived from adult human ventricular cardiomyocytes. J Mol Cell Cardiol. 2005;39(1):133–47.

    CAS  PubMed  Google Scholar 

  56. Kuznetsov AV, Javadov S, Sickinger S, Frotschnig S, Grimm M. H9c2 and HL-1 cells demonstrate distinct features of energy metabolism, mitochondrial function and sensitivity to hypoxia-reoxygenation. Biochim Biophys Acta, Mol Cell Res. 2015;1853(2):276–84.

    CAS  Google Scholar 

  57. Gulyas-Onodi Z, Visnovitz T, Koncz A, Varadi B, Agg B, Kiss B, et al. Transcriptomic analysis and comparative characterization of rat H9C2, human AC16 and murine HL-1 cardiac cell lines. Cardiovasc Res. 2022;118(Supplement_1):cvac066.08.

    Google Scholar 

  58. Zhang B, Korolj A, Lai BFL, Radisic M. Advances in organ-on-a-chip engineering. Nat Rev Mater. 2018;3(8):257–78.

    Google Scholar 

  59. Marsano A, Conficconi C, Lemme M, Occhetta P, Gaudiello E, Votta E, et al. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip. 2016;16(3):599–610.

    CAS  PubMed  Google Scholar 

  60. Agarwal A, Goss JA, Cho A, McCain ML, Parker KK. Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip. 2013;13(18):3599–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Parsa H, Wang BZ, Vunjak-Novakovic G. A microfluidic platform for the high-throughput study of pathological cardiac hypertrophy. Lab Chip. 2017;17(19):3264–71.

    CAS  PubMed  Google Scholar 

  62. Grosberg A, Alford PW, McCain ML, Parker KK. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip. 2011;11(24):4165–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Aung A, Bhullar IS, Theprungsirikul J, Davey SK, Lim HL, Chiu Y-J, et al. 3D cardiac μtissues within a microfluidic device with real-time contractile stress readout. Lab Chip. 2016;16(1):153–62.

    CAS  PubMed  Google Scholar 

  64. López-Canosa A, Perez-Amodio S, Yanac-Huertas E, Ordoño J, Rodriguez-Trujillo R, Samitier J, et al. A microphysiological system combining electrospun fibers and electrical stimulation for the maturation of highly anisotropic cardiac tissue. Biofabrication. 2021;13(3):035047.

    Google Scholar 

  65. Nguyen PD, Hsiao ST, Sivakumaran P, Lim SY, Dilley RJ. Enrichment of neonatal rat cardiomyocytes in primary culture facilitates long-term maintenance of contractility in vitro. Am J Physiol Cell Physiol. 2012;303(12):C1220–8.

    CAS  PubMed  Google Scholar 

  66. Schaper J, Meiser E, Stämmler G. Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ Res. 1985;56(3):377–91.

    CAS  PubMed  Google Scholar 

  67. Orford KW, Scadden DT. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet. 2008;9(2):115–28.

    CAS  PubMed  Google Scholar 

  68. Zhang YV, Cheong J, Ciapurin N, McDermitt DJ, Tumbar T. Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells. Cell Stem Cell. 2009;5(3):267–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    CAS  PubMed  Google Scholar 

  70. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res. 2009;104(4):e30–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu C, Police S, Rao N, Carpenter MK. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res. 2002;91(6):501–8.

    CAS  PubMed  Google Scholar 

  72. Boheler KR, Czyz J, Tweedie D, Yang H-T, Anisimov SV, Wobus AM. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res. 2002;91(3):189–201.

    CAS  PubMed  Google Scholar 

  73. Zhang D, Shadrin IY, Lam J, Xian H-Q, Snodgrass HR, Bursac N. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials. 2013;34(23):5813–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Campostrini G, Windt LM, van Meer BJ, Bellin M, Mummery CL. Cardiac tissues from stem cells. Circ Res. 2021;128(6):775–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol. 2020;17(6):341–59.

    PubMed  PubMed Central  Google Scholar 

  76. Zhang R, Guo T, Han Y, Huang H, Shi J, Hu J, et al. Design of synthetic microenvironments to promote the maturation of human pluripotent stem cell derived cardiomyocytes. J Biomed Mater Res, Part B. 2021;109(7):949–60.

    CAS  Google Scholar 

  77. Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song L, Sirabella D, et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature. 2018;556(7700):239–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kolanowski TJ, Antos CL, Guan K. Making human cardiomyocytes up to date: derivation, maturation state and perspectives. Int J Cardiol. 2017;241:379–86.

    PubMed  Google Scholar 

  79. Vivas A, van den Berg A, Passier R, Odijk M, van der Meer AD. Fluidic circuit board with modular sensor and valves enables stand-alone, tubeless microfluidic flow control in organs-on-chips. Lab Chip. 2022;22(6):1231–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Huang CY, Peres Moreno Maia-Joca R, Ong CS, Wilson I, DiSilvestre D, Tomaselli GF, et al. Enhancement of human iPSC-derived cardiomyocyte maturation by chemical conditioning in a 3D environment. J Mol Cell Cardiol. 2020;138:1–11.

    CAS  PubMed  Google Scholar 

  81. Kolanowski TJ, Busek M, Schubert M, Dmitrieva A, Binnewerg B, Pöche J, et al. Enhanced structural maturation of human induced pluripotent stem cell-derived cardiomyocytes under a controlled microenvironment in a microfluidic system. Acta Biomater. 2020;102:273–86.

    CAS  PubMed  Google Scholar 

  82. Kofron CM, Mende U. In vitro models of the cardiac microenvironment to study myocyte and non-myocyte crosstalk: bioinspired approaches beyond the polystyrene dish. J Physiol. 2017;595(12):3891–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Veldhuizen J, Cutts J, Brafman DA, Migrino RQ, Nikkhah M. Engineering anisotropic human stem cell-derived three-dimensional cardiac tissue on a chip. Biomaterials. 2020;256:120195.

    CAS  PubMed  Google Scholar 

  84. Huebsch N, Charrez B, Neiman G, Siemons B, Boggess SC, Wall S, et al. Metabolically driven maturation of human-induced-pluripotent-stem-cell-derived cardiac microtissues on microfluidic chips. Nat Biomed Eng. 2022;6(4):372–88.

    CAS  PubMed  Google Scholar 

  85. Huang Y-L, Walker AS, Miller EW. A photostable silicon rhodamine platform for optical voltage sensing. J Am Chem Soc. 2015;137(33):10767–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mastikhina O, Moon B-U, Williams K, Hatkar R, Gustafson D, Mourad O, et al. Human cardiac fibrosis-on-a-chip model recapitulates disease hallmarks and can serve as a platform for drug testing. Biomaterials. 2020;233:119741.

    CAS  PubMed  Google Scholar 

  87. Pop-Busui R, Januzzi JL, Bruemmer D, Butalia S, Green JB, Horton WB, et al. Heart failure: An underappreciated complication of diabetes. A consensus report of the american diabetes association. Diabetes Care. 2022;45(7):1670–90.

    PubMed  Google Scholar 

  88. Ma Y, Liu C, Cao S, Chen T, Chen G. Microfluidics for diagnosis and treatment of cardiovascular disease. J Mat Chem B. 2023;11:546–59.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC, 22022401, 22074022, 21934001), Sino-German Center Mobility Programme (M-0614), and the Ministry of Science and Technology of China (MOST, 2020YFF0304502, 2022YFC2704300).

Author information

Authors and Affiliations

Authors

Contributions

Y. Liu wrote the original manuscript; L. Lin and L. Qiao revised the manuscript and finalized the manuscript.

Corresponding authors

Correspondence to Ling Lin or Liang Qiao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Lin, L. & Qiao, L. Recent developments in organ-on-a-chip technology for cardiovascular disease research. Anal Bioanal Chem 415, 3911–3925 (2023). https://doi.org/10.1007/s00216-023-04596-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04596-9

Keywords

Navigation