Skip to main content

Culture and Co-culture of Cells for Multi-organ on a Chip

  • Chapter
  • First Online:
Microfluidics and Multi Organs on Chip
  • 1311 Accesses

Abstract

The pre-clinical trials in the drug discovery timeline involve an immense amount of time and money to elucidate the drug responses precisely. Cell culture techniques have been utilized for decades to understand the in vivo responses and aided in many research areas, including tissue engineering, biomedical engineering and the pharmaceutical industry. Microfluidic cell culture provides a novel cell culture technique that allows the control of the local environment using microscale dimensions and mimic the human circulatory system. Organ-on-a-chip technology provides a promising alternative for animal models and can better recapitulate the physiological environment with the help of human-derived cell sources. The 3D cell culture provides more physiologically relevant responses than the 2D. The cells in a 3D cell culture are surrounded by the extracellular matrix (ECM) that could enhance the growth and physiological responses. Many significant advances in organ-on-a-chip development integrated with microfluidics have opened the gateway for integrated cell culture techniques and multi-organ cell cultures. The co-culture of cells with the support of various membranes and scaffolds also provides a futuristic application in drug development and disease modelling. The remarkable properties of hydrogels provide more reliable cell culture support and better experimental results. This chapter focuses on the importance of co-culture systems and multi-organ on a chip for various biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langhans SA (2018) Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol 9:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Hussey GS, Dziki JL, Badylak SF (2018) Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater 3:159–173

    Article  CAS  Google Scholar 

  3. Goers L, Freemont P, Polizzi KM (2014) Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface 11:20140065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Liu X, Fang J, Huang S et al (2021) Tumor-on-a-chip: from bioinspired design to biomedical application. Microsyst Nanoeng 7:1–23

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sung JH, Wang YI, Narasimhan Sriram N et al (2018) Recent advances in body-on-a-chip systems. Anal Chem 91:330–351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Abulaiti M, Yalikun Y, Murata K et al (2020) Establishment of a heart-on-a-chip microdevice based on human iPS cells for the evaluation of human heart tissue function. Sci Rep 10:1–12

    Article  CAS  Google Scholar 

  7. Jayne RK, Karakan MÇ, Zhang K et al (2021) Direct laser writing for cardiac tissue engineering: a microfluidic heart on a chip with integrated transducers. Lab Chip 21:1724–1737

    Article  CAS  PubMed  Google Scholar 

  8. Gijzen L, Yengej FAY, Schutgens F et al (2021) Culture and analysis of kidney tubuloids and perfused tubuloid cells-on-a-chip. Nat Protoc 16:2023–2050

    Article  CAS  PubMed  Google Scholar 

  9. Cohen A, Ioannidis K, Ehrlich A et al (2021) Mechanism and reversal of drug-induced nephrotoxicity on a chip. Sci Transl Med 13:eabd6299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang D, Liu T, Liao J et al (2021) Reversed-engineered human alveolar lung-on-a-chip model. Proc Natl Acad Sci U S A 118(19):e2016146118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tas S, Rehnberg E, Bölükbas DA et al (2021) 3D printed lung on a chip device with a stretchable nanofibrous membrane for modeling ventilator induced lung injury. bioRxiv. https://doi.org/10.1101/2021.07.02.450873

  12. Meng Q, Wang Y, Li Y, Shen C (2021) Hydrogel microfluidic-based liver-on-a-chip: mimicking the mass transfer and structural features of liver. Biotechnol Bioeng 118:612–621

    Article  CAS  PubMed  Google Scholar 

  13. Tian T, Chen C, Sun H et al (2021) A 3D bio-printed spheroids based perfusion in vitro liver on chip for drug toxicity assays. Chinese Chem Lett. https://doi.org/10.1016/j.cclet.2021.11.029

  14. Shuler ML, Ghanem A, Quick D et al (1996) A self-regulating cell culture analog device to mimic animal and human toxicological responses. Biotechnol Bioeng 52:45–60

    Article  CAS  PubMed  Google Scholar 

  15. Liu W, Song J, Du X et al (2019) AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model. Acta Biomater 91:195–208. https://doi.org/10.1016/j.actbio.2019.04.053

    Article  CAS  PubMed  Google Scholar 

  16. Baert Y, Ruetschle I, Cools W et al (2020) A multi-organ-chip co-culture of liver and testis equivalents: a first step toward a systemic male reprotoxicity model. Hum Reprod 35:1029–1044

    Article  CAS  PubMed  Google Scholar 

  17. McAleer CW, Long CJ, Elbrecht D et al (2019) Multi-organ system for the evaluation of efficacy and off-target toxicity of anti-cancer therapeutics. Sci Transl Med 11(497):eaav1386

    Article  CAS  PubMed  Google Scholar 

  18. Hou Y, Ai X, Zhao L et al (2020) An integrated biomimetic array chip for high-throughput co-culture of liver and tumor microtissues for advanced anti-cancer bioactivity screening. Lab Chip 20:2482–2494

    Article  CAS  PubMed  Google Scholar 

  19. Rogers MT, Gard AL, Gaibler R et al (2021) A high-throughput microfluidic bilayer co-culture platform to study endothelial-pericyte interactions. Sci Rep 11:1–14

    Article  CAS  Google Scholar 

  20. Yu F, Goh YT, Li H et al (2020) A vascular-liver chip for sensitive detection of nutraceutical metabolites from human pluripotent stem cell derivatives. Biomicrofluidics 14:034108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li Z, Li D, Guo Y et al (2021) Evaluation of hepatic drug-metabolism for glioblastoma using liver-brain chip. Biotechnol Lett 43:383–392

    Article  PubMed  CAS  Google Scholar 

  22. Yin F, Zhang X, Wang L et al (2021) HiPSC-derived multi-organoids-on-chip system for safety assessment of antidepressant drugs. Lab Chip 21:571–581

    Article  CAS  PubMed  Google Scholar 

  23. Stucki JD, Hobi N, Galimov A et al (2018) Medium throughput breathing human primary cell alveolus-on-chip model. Sci Rep 8:1–13

    Article  CAS  Google Scholar 

  24. Bauer S, Huldt CW, Kanebratt KP et al (2017) Functional coupling of human pancreatic islets and liver spheroids on-a-chip: towards a novel human ex vivo type 2 diabetes model. Sci Rep 7:1–11

    Article  CAS  Google Scholar 

  25. Sriram G, Alberti M, Dancik Y et al (2018) Full-thickness human skin-on-chip with enhanced epidermal morphogenesis and barrier function. Mater Today 21:326–340

    Article  CAS  Google Scholar 

  26. Kasendra M, Tovaglieri A, Sontheimer-Phelps A et al (2018) Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids. Sci Rep 8:1–14

    Article  CAS  Google Scholar 

  27. Zhang C, Zhao Z, Rahim NAA et al (2009) Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments. Lab Chip 9:3185–3192

    Article  CAS  PubMed  Google Scholar 

  28. Astashkina A, Mann B, Grainger DW (2012) A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacol Ther 134:82–106

    Article  CAS  PubMed  Google Scholar 

  29. Prot JM, Maciel L, Bricks T et al (2014) First pass intestinal and liver metabolism of paracetamol in a microfluidic platform coupled with a mathematical modeling as a means of evaluating ADME processes in humans. Biotechnol Bioeng 111:2027–2040

    Article  CAS  PubMed  Google Scholar 

  30. Schimek K, Frentzel S, Luettich K et al (2020) Human multi-organ chip co-culture of bronchial lung culture and liver spheroids for substance exposure studies. Sci Rep 10:1–13

    Article  CAS  Google Scholar 

  31. Bricks T, Paullier P, Legendre A et al (2014) Development of a new microfluidic platform integrating co-cultures of intestinal and liver cell lines. Toxicol In Vitro 28:885–895

    Article  CAS  PubMed  Google Scholar 

  32. Kimura H, Ikeda T, Nakayama H et al (2015) An on-chip small intestine–liver model for pharmacokinetic studies. J Lab Autom 20:265–273

    Article  CAS  PubMed  Google Scholar 

  33. Chen HJ, Miller P, Shuler ML (2018) A pumpless body-on-a-chip model using a primary culture of human intestinal cells and a 3D culture of liver cells. Lab Chip 18:2036–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mahler GJ, Shuler ML, Glahn RP (2009) Characterization of Caco-2 and HT29-MTX co-cultures in an in vitro digestion/cell culture model used to predict iron bioavailability. J Nutr Biochem 20:494–502

    Article  CAS  PubMed  Google Scholar 

  35. Esch MB, Ueno H, Applegate DR, Shuler ML (2016) Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Lab Chip 16:2719–2729. https://doi.org/10.1039/C6LC00461J

    Article  CAS  PubMed  Google Scholar 

  36. Avior Y, Sagi I, Benvenisty N (2016) Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol 17:170–182

    Article  CAS  PubMed  Google Scholar 

  37. Vatine GD, Barrile R, Workman MJ et al (2019) Human iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell 24:995–1005

    Article  CAS  PubMed  Google Scholar 

  38. Oleaga C, Riu A, Rothemund S et al (2018) Investigation of the effect of hepatic metabolism on off-target cardiotoxicity in a multi-organ human-on-a-chip system. Biomaterials 182:176–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sances S, Ho R, Vatine G et al (2018) Human iPSC-derived endothelial cells and microengineered organ-chip enhance neuronal development. Stem Cell Rep 10:1222–1236

    Article  CAS  Google Scholar 

  40. Low LA, Tagle DA (2017) Organs-on-chips: progress, challenges, and future directions. Exp Biol Med 242:1573–1578

    Article  CAS  Google Scholar 

  41. Agrawal AA, Nehilla BJ, Reisig KV et al (2010) Porous nanocrystalline silicon membranes as highly permeable and molecularly thin substrates for cell culture. Biomaterials 31:5408–5417

    Article  CAS  PubMed  Google Scholar 

  42. Ma SH, Lepak LA, Hussain RJ et al (2005) An endothelial and astrocyte co-culture model of the blood–brain barrier utilizing an ultra-thin, nanofabricated silicon nitride membrane. Lab Chip 5:74–85

    Article  CAS  PubMed  Google Scholar 

  43. Carter RN, Casillo SM, Mazzocchi AR et al (2017) Ultrathin transparent membranes for cellular barrier and co-culture models. Biofabrication 9:15019

    Article  CAS  Google Scholar 

  44. Booth R, Kim H (2012) Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip 12:1784–1792. https://doi.org/10.1039/c2lc40094d

    Article  CAS  PubMed  Google Scholar 

  45. Achyuta AKH, Conway AJ, Crouse RB et al (2013) A modular approach to create a neurovascular unit-on-a-chip. Lab Chip 13:542–553. https://doi.org/10.1039/c2lc41033h

    Article  CAS  PubMed  Google Scholar 

  46. Musah S, Mammoto A, Ferrante TC et al (2017) Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng 1:0069. https://doi.org/10.1038/s41551-017-0069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zanella F, Lorens JB, Link W (2010) High content screening: seeing is believing. Trends Biotechnol 28:237–245

    Article  CAS  PubMed  Google Scholar 

  48. Ross AM, Jiang Z, Bastmeyer M, Lahann J (2012) Physical aspects of cell culture substrates: topography, roughness, and elasticity. Small 8:336–355

    Article  CAS  PubMed  Google Scholar 

  49. Hakkinen KM, Harunaga JS, Doyle AD, Yamada KM (2011) Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng Part A 17:713–724

    Article  CAS  PubMed  Google Scholar 

  50. Chitcholtan K, Sykes PH, Evans JJ (2012) The resistance of intracellular mediators to doxorubicin and cisplatin are distinct in 3D and 2D endometrial cancer. J Transl Med 10:1–16

    Article  CAS  Google Scholar 

  51. Giobbe GG, Crowley C, Luni C et al (2019) Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nat Commun 10:1–14

    Article  CAS  Google Scholar 

  52. Ding C, Chen X, Kang Q, Yan X (2020) Biomedical application of functional materials in organ-on-a-chip. Front Bioeng Biotechnol 8:823

    Article  PubMed  PubMed Central  Google Scholar 

  53. Huh D (2015) A human breathing lung-on-a-chip. Ann Am Thorac Soc 12:S42–S44

    Article  PubMed  Google Scholar 

  54. Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21:745–754. https://doi.org/10.1016/j.tcb.2011.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Becerra DC, Jeffs S, Wu T, Ott H (2021) High-throughput culture method of induced pluripotent stem cell derived alveolar epithelial cells using floating matrigel droplets. J Hear Lung Transplant 40:S52

    Article  Google Scholar 

  56. Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845

    Article  CAS  PubMed  Google Scholar 

  57. Sung JH (2021) Multi-organ-on-a-chip for pharmacokinetics and toxicokinetic study of drugs. Expert Opin Drug Metab Toxicol 17:969–986

    Article  PubMed  Google Scholar 

  58. Esch EW, Bahinski A, Huh D (2015) Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 14:248–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Alford PW, Feinberg AW, Sheehy SP, Parker KK (2010) Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials 31:3613–3621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sung JH, Shuler ML (2009) A micro cell culture analog (μCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 9:1385–1394

    Article  CAS  PubMed  Google Scholar 

  61. Li Z, Guo Y, Yu Y et al (2016) Assessment of metabolism-dependent drug efficacy and toxicity on a multilayer organs-on-a-chip. Integr Biol 8:1022–1029

    Article  CAS  Google Scholar 

  62. D’Costa K, Kosic M, Lam A et al (2020) Biomaterials and culture systems for development of organoid and organ-on-a-chip models. Ann Biomed Eng 48:2002–2027

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kim L, Toh Y-C, Voldman J, Yu H (2007) A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab Chip 7:681–694

    Article  CAS  PubMed  Google Scholar 

  64. Huh D, Leslie DC, Matthews BD et al (2012) A human disease model of drug toxicity–induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4:159ra147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Jain A, Barrile R, van der Meer AD et al (2018) Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics. Clin Pharmacol Ther 103:332–340

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors wish to express their thanks to the Director and Head, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Government of India), Trivandrum, Kerala, India for their support and providing the infrastructure to carry out this work. AA, JX, AV, PVM thank the Department of Science and Technology, Government of India, New Delhi for financial support (DST/TDT/DDP- 04/2018(G)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Mohanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arathi, A., Joseph, X., Megha, K.B., Akhil, V., Mohanan, P.V. (2022). Culture and Co-culture of Cells for Multi-organ on a Chip. In: Mohanan, P.V. (eds) Microfluidics and Multi Organs on Chip . Springer, Singapore. https://doi.org/10.1007/978-981-19-1379-2_9

Download citation

Publish with us

Policies and ethics