Skip to main content

Advertisement

Log in

Trends in single-impact electrochemistry for bacteria analysis

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Single-impact electrochemistry for the analysis of bacteria is a powerful technique for biosensing applications at the single-cell scale. The sensitivity of this electro-analytical method has been widely demonstrated based on chronoamperometric measurements at an ultramicroelectrode polarized at the appropriate potential of redox species in solution. Furthermore, the most recent studies display a continuous improvement in the ability of this sensitive electrochemical method to identify different bacterial strains with better selectivity. To achieve this, several strategies, such as the presence of a redox mediator, have been investigated for detecting and identifying the bacterial cell through its own electrochemical behavior. Both the blocking electrochemical impacts method and electrochemical collisions of single bacteria with a redox mediator are reported in this review and discussed through relevant examples. An original sensing strategy for virulence factors originating from pathogenic bacteria is also presented, based on a recent proof of concept dealing with redox liposome single-impact electrochemistry. The limitations, applications, perspectives, and challenges of single-impact electrochemistry for bacteria analysis are briefly discussed, based on the most significant published data.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Copyright © 2022 Wiley Online Library

Similar content being viewed by others

References

  1. Zhang JH, Zhou YG. Nano-impact electrochemistry: Analysis of single bioentities. TrAC Trends Anal Chem. 2020;123: 115768.

    Article  CAS  Google Scholar 

  2. Hu K, Nguyen TDK, Rabasco S, Oomen PE, Ewing AG. Chemical analysis of single cells and organelles. Anal Chem. 2021;93(1):41–71.

    Article  CAS  PubMed  Google Scholar 

  3. Kuss S, Amin HMA, Compton RG. Electrochemical detection of pathogenic bacteria—recent strategies, advances and challenges. Chem – Asian J. 2018;13(19):2758‑69.

  4. Amiri M, Bezaatpour A, Jafari H, Boukherroub R, Szunerits S. Electrochemical methodologies for the detection of pathogens. ACS Sens. 2018;3(6):1069–86.

    Article  CAS  PubMed  Google Scholar 

  5. Kuss S, Couto RAS, Evans RM, Lavender H, Tang CC, Compton RG. Versatile electrochemical sensing platform for bacteria. Anal Chem. 2019;91(7):4317–22.

    Article  CAS  PubMed  Google Scholar 

  6. McCormick HK, Dick JE. Nanoelectrochemical quantification of single-cell metabolism. Anal Bioanal Chem. 2021;413(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  7. Woods LA, Ewing AG. Analysis of single mammalian cells with capillary electrophoresis. Anal Bioanal Chem. 2003;376(3):281–3.

    Article  CAS  PubMed  Google Scholar 

  8. Chen R, Alanis K, Welle TM, Shen M. Nanoelectrochemistry in the study of single-cell signaling. Anal Bioanal Chem. 2020;412(24):6121–32.

    Article  CAS  PubMed  Google Scholar 

  9. Sundaresan V, Do H, Shrout JD, Bohn PW. Electrochemical and spectroelectrochemical characterization of bacteria and bacterial systems. Analyst. 2021;147(1):22–34.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Goines S, Dick JE. Review—electrochemistry’s potential to reach the ultimate sensitivity in measurement science. J Electrochem Soc. 2019;167(3): 037505.

    Article  Google Scholar 

  11. Moussa S, Mauzeroll J. Review—microelectrodes: an overview of probe development and bioelectrochemistry applications from 2013 to 2018. J Electrochem Soc. 2019;166(6):G25-38.

    Article  CAS  Google Scholar 

  12. Sekretareva A. Single-entity electrochemistry of collision in sensing applications. Sens Actuators Rep. 2021;3: 100037.

    Article  Google Scholar 

  13. Lebègue E, Anderson CM, Dick JE, Webb LJ, Bard AJ. Electrochemical detection of single phospholipid vesicle collisions at a Pt ultramicroelectrode. Langmuir. 2015;31(42):11734–9.

    Article  PubMed  Google Scholar 

  14. Dick JE, Lebègue E, Strawsine LM, Bard AJ. Millisecond coulometry via zeptoliter droplet collisions on an ultramicroelectrode. Electroanalysis. 2016;28(10):2320–6.

    Article  CAS  Google Scholar 

  15. Lebègue E, Barrière F, Bard AJ. Lipid membrane permeability of synthetic redox DMPC liposomes investigated by single electrochemical collisions. Anal Chem. 2020;92(3):2401–8.

    Article  PubMed  Google Scholar 

  16. Lebègue E, Costa NL, Louro RO, Barrière F. Communication—electrochemical single nano-impacts of electroactive Shewanella oneidensis bacteria onto carbon ultramicroelectrode. J Electrochem Soc. 2020;167(10): 105501.

    Article  Google Scholar 

  17. Luy J, Ameline D, Thobie-Gautier C, Boujtita M, Lebègue E. Detection of bacterial rhamnolipid toxin by redox liposome single impact electrochemistry. Angew Chem Int Ed. 2022;61(6): e202111416.

    Article  CAS  Google Scholar 

  18. Dick JE. Electrochemical detection of single cancer and healthy cell collisions on a microelectrode. Chem Commun. 2016;52(72):10906–9.

    Article  CAS  Google Scholar 

  19. Dick JE, Hilterbrand AT, Boika A, Upton JW, Bard AJ. Electrochemical detection of a single cytomegalovirus at an ultramicroelectrode and its antibody anchoring. Proc Natl Acad Sci. 2015;112(17):5303–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smida H, Thobie-Gautier C, Boujtita M, Lebègue E. Recent advances in single liposome electrochemistry. Curr Opin Electrochem. 2022;36: 101141.

    Article  CAS  Google Scholar 

  21. Quinn BM, van’t Hof PG, Lemay SG. Time-resolved electrochemical detection of discrete adsorption events. J Am Chem Soc. 2004;126(27):8360‑1.

  22. Xiao X, Fan FRF, Zhou J, Bard AJ. Current transients in single nanoparticle collision events. J Am Chem Soc. 2008;130(49):16669–77.

    Article  CAS  PubMed  Google Scholar 

  23. Sepunaru L, Tschulik K, Batchelor-McAuley C, Gavish R, Compton RG. Electrochemical detection of single E. coli bacteria labeled with silver nanoparticles. Biomater Sci. 2015;3(6):816‑20.

  24. Dunevall J, Fathali H, Najafinobar N, Lovric J, Wigström J, Cans AS, et al. Characterizing the catecholamine content of single mammalian vesicles by collision-adsorption events at an electrode. J Am Chem Soc. 2015;137(13):4344–6.

    Article  CAS  PubMed  Google Scholar 

  25. Dick JE, Renault C, Bard AJ. Observation of single-protein and DNA macromolecule collisions on ultramicroelectrodes. J Am Chem Soc. 2015;137(26):8376–9.

    Article  CAS  PubMed  Google Scholar 

  26. Deng Z, Elattar R, Maroun F, Renault C. In situ measurement of the size distribution and concentration of insulating particles by electrochemical collision on hemispherical ultramicroelectrodes. Anal Chem. 2018;90(21):12923–9.

    Article  CAS  PubMed  Google Scholar 

  27. Farooq A, Butt NZ, Hassan U. Circular shaped microelectrodes for single cell electrical measurements for lab-on-a-chip applications. Biomed Microdevices. 2021;23(3):35.

    Article  CAS  PubMed  Google Scholar 

  28. Gao G, Wang D, Brocenschi R, Zhi J, Mirkin MV. Toward the detection and identification of single bacteria by electrochemical collision technique. Anal Chem. 2018;90(20):12123–30.

    Article  CAS  PubMed  Google Scholar 

  29. Lee JY, Kim BK, Kang M, Park JH. Label-free detection of single living bacteria via electrochemical collision event. Sci Rep. 2016;6:30022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ronspees AT, Thorgaard SN. Blocking electrochemical collisions of single E. coli and B. subtilis bacteria at ultramicroelectrodes elucidated using simultaneous fluorescence microscopy. Electrochim Acta. 2018;278:412‑20.

  31. Smida H, Lefèvre FX, Thobie-Gautier C, Boujtita M, Paquete CM, Lebègue E. Single Electrochemical Impacts of Shewanella oneidensis MR-1 Bacteria for Living Cells Adsorption onto a Polarized Ultramicroelectrode Surface. ChemElectroChem. 2023;10(1): e202200906.

    Article  CAS  Google Scholar 

  32. Couto RAS, Chen L, Kuss S, Compton RG. Detection of Escherichia coli bacteria by impact electrochemistry. Analyst. 2018;143(20):4840–3.

    Article  CAS  PubMed  Google Scholar 

  33. Chen Y, Wang D, Liu Y, Gao G, Zhi J. Redox activity of single bacteria revealed by electrochemical collision technique. Biosens Bioelectron. 2020;176: 112914.

    Article  PubMed  Google Scholar 

  34. Chen Y, Liu Y, Wang D, Gao G, Zhi J. Three-mediator enhanced collisions on an ultramicroelectrode for selective identification of single saccharomyces cerevisiae. Anal Chem. 2022;94(37):12630–7.

    Article  CAS  PubMed  Google Scholar 

  35. Deng Z, Renault C. Detection of individual insulating entities by electrochemical blocking. Curr Opin Electrochem. 2021;25: 100619.

    Article  CAS  Google Scholar 

  36. Thorgaard SN, Jenkins S, Tarach AR. Influence of electroosmotic flow on stochastic collisions at ultramicroelectrodes. Anal Chem. 2020;92(18):12663–9.

    Article  CAS  PubMed  Google Scholar 

  37. Frkonja-Kuczin A, Ray L, Zhao Z, Konopka MC, Boika A. Electrokinetic preconcentration and electrochemical detection of Escherichia coli at a microelectrode. Electrochim Acta. 2018;280:191–6.

    Article  CAS  Google Scholar 

  38. Wang X, Clément R, Roger M, Bauzan M, Mazurenko I, de Poulpiquet A, et al. Bacterial respiratory chain diversity reveals a cytochrome c oxidase reducing O2 at low overpotentials. J Am Chem Soc. 2019;141(28):11093–102.

    Article  CAS  PubMed  Google Scholar 

  39. Thet NT, Jenkins ATA. An electrochemical sensor concept for the detection of bacterial virulence factors from Staphylococcus aureus and Pseudomonas aeruginosa. Electrochem Commun. 2015;59:104–8.

    Article  CAS  Google Scholar 

  40. Roehrich B, Liu EZ, Silverstein R, Sepunaru L. Detection and characterization of single particles by electrochemical impedance spectroscopy. J Phys Chem Lett. 2021;12(40):9748–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by Nantes Université and Région Pays de la Loire (Rising stars program, e-NANOBIO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estelle Lebègue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smida, H., Langlard, A., Ameline, D. et al. Trends in single-impact electrochemistry for bacteria analysis. Anal Bioanal Chem 415, 3717–3725 (2023). https://doi.org/10.1007/s00216-023-04568-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04568-z

Keywords

Navigation