Skip to main content
Log in

A fast temperature-programmed second-dimension column for comprehensive two-dimensional gas chromatography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The short analysis time and constant temperature environment in the second dimension of two-dimensional comprehensive chromatography frequently causes wraparound problems, especially for complex high boilers. This problem can be solved by temperature programming on the second column, but since this requires heating and cooling the column in a matter of seconds, it is difficult to implement. In this study, we describe a method of accomplishing rapid heating and cooling with a resistively heated column cooled by compressed air. Critical to this method is minimizing the lag time between the actual temperature and the reported temperature by using the column heating element as the temperature sensor, virtually eliminating the danger of overshooting the temperature setpoint. This technique facilitates a ramp rate of up to 100 °C/s with minimal overshooting—well beyond the requirements of gas chromatography. A single-layer column bundle design allows a compressed-air cooling device to cool the column from 200 to 50 °C at an average rate of −21 °C/s. The secondary dimension temperature programming is facilitated by the longer secondary dimension time made possible by the direct flow modulation method. We evaluated the performance of the single-layer column bundle and demonstrated this method by applying it to a gasoline sample. We also compared this method with the traditional isothermal approach and found that use of the secondary temperature program reduced the naphthalene retention time from 12.1 to 6.3 s and its peak width at half height from 846 to 126 ms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu Z, Phillips JB. Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface. J Chromatogr Sci. 1991;29:227–31. https://doi.org/10.1093/chromsci/29.6.227.

    Article  CAS  Google Scholar 

  2. Phillips JB, Ledford EB. Thermal modulation: a chemical instrumentation component of potential value in improving portability. Field Anal Chem Technol. 1996;1(1):23–9. https://doi.org/10.1002/(sici)1520-6521(1996)1:1%3c23::aid-fact4%3e3.0.co;2-f.

    Article  CAS  Google Scholar 

  3. Marriott PJ, Kinghorn RM. Longitudinally modulated cryogenic system. A generally applicable approach to solute trapping and mobilization in gas chromatography. Anal Chem. 1997;69:2582–8. https://doi.org/10.1021/ac961310w.

    Article  CAS  PubMed  Google Scholar 

  4. de Geus HJ, de Boer J, Brinkman UAT. Development of a thermal desorption modulator for gas chromatography. J Chromatogr A. 1997;767:137–215. https://doi.org/10.1016/S0021-9673(97)00038-1.

    Article  Google Scholar 

  5. Kinghorn RM, Marriott PJ. Comprehensive two-dimensional gas chromatography using a modulating cryogenic trap. J High Resol Chromatogr. 1998;21(11):620–2. https://doi.org/10.1002/(sici)1521-4168(19981101)21:11%3c620::aid-jhrc620%3e3.0.co;2-#.

    Article  CAS  Google Scholar 

  6. Phillips JB, Gaines RB, Blomberg J, van der Wielen FWM, Dimandja JM, Green V, Granger J, Patterson D, Racovalis L, de Geus HJ, de Boer J, Haglund P, Lipsky J, Sinha V, Ledford EB Jr. A robust thermal modulator for comprehensive two-dimensional gas chromatography. J High Resol Chromatogr. 1999;22(1):3–10. https://doi.org/10.1002/(SICI)1521-4168(19990101)22:1<3::AID-JHRC3>3.0.CO;2-U.

  7. Ledford EB Jr, Billesbach C. Jet-cooled thermal modulator for comprehensive multidimensional gas chromatography. J High Resolut Chromatogr. 2000;23(3):202–4. https://doi.org/10.1002/(sici)1521-4168(20000301)23:3%3c202::aid-jhrc202%3e3.0.co;2-5.

    Article  CAS  Google Scholar 

  8. Seeley JV, Kramp F, Hicks CJ. Comprehensive two-dimensional gas chromatography via differential flow modulation. Anal Chem. 2000;72:4346–52. https://doi.org/10.1021/ac000249z.

    Article  CAS  PubMed  Google Scholar 

  9. de Geus HJ, Schelvis A, de Boer J, Th BUA. Comprehensive two dimensional gas chromatography with a rotating thermal desorption modulator and independently temperature-programmable columns. J High Resolut Chromatogr. 2000;23(3):189–96. https://doi.org/10.1002/(SICI)1521-4168(20000301)23:3%3c189::AID-JHRC189%3e3.0.CO;2-N.

    Article  Google Scholar 

  10. Beens J, Adahchour M, Vreuls RJJ, van Altena K, Th BUA. Simple, nonmoving modulation interface for comprehensive two-dimensional gas chromatography. J Chromatogr A. 2001;919:127–32. https://doi.org/10.1016/s0021-9673(01)00785-3.

    Article  CAS  PubMed  Google Scholar 

  11. Hyŏtylăinen T, Kallio M, Hartonen K, Jussila M, Palonen S, Riekkola ML. Modulator design for comprehensive two-dimensional gas chromatography: quantitative analysis of polyaromatic hydrocarbons and polychlorinated biphenyls. Anal Chem. 2002;74:4441–6. https://doi.org/10.1021/ac0201528.

    Article  CAS  PubMed  Google Scholar 

  12. Harynuk J, Gorecki T. New liquid nitrogen cryogenic modulator for comprehensive two dimensional gas chromatography. J Chromatogr A. 2003;1019:53–63. https://doi.org/10.1016/j.chroma.2003.08.097.

    Article  CAS  PubMed  Google Scholar 

  13. Cai H, Stearns SD. Partial modulation method via pulsed flow modulator for comprehensive two-dimensional gas chromatography. Anal Chem. 2004;76:6064–76. https://doi.org/10.1021/ac0492463.

    Article  CAS  PubMed  Google Scholar 

  14. Mohler RE, Prazen BJ, Synovec RE. Total-transfer, valve-based comprehensive two-dimensional gas chromatography. Anal Chim Acta. 2006;555:68–74. https://doi.org/10.1016/j.aca.2005.08.072.

    Article  CAS  Google Scholar 

  15. Seeley JV, Micyus NJ, Bandurski SV, Seeley SK, McCurry JD. Microfluidic Deans switch for comprehensive two-dimensional gas chromatography. Anal Chem. 2007;79:1840–7. https://doi.org/10.1021/ac061881g.

    Article  CAS  PubMed  Google Scholar 

  16. Poliak M, Kochman M, Amirav A. Pulsed flow modulation comprehensive two-dimensional gas chromatography. J Chromatogr A. 2008;1186:189–95. https://doi.org/10.1016/j.chroma.2007.09.030.

    Article  CAS  PubMed  Google Scholar 

  17. Tranchida PQ, Purcaro G, Visco A, Conte L, Dugo P, Dawes P, Mondello L. A flexible loop-type flow modulator for comprehensive two-dimensional gas chromatography. J Chromatogr A. 2011;1218:3140–5. https://doi.org/10.1016/j.chroma.2010.11.082.

    Article  CAS  PubMed  Google Scholar 

  18. Griffith JF, Winniford WL, Sun K, Edam R, Luong JC. A reversed-flow differential flow modulator for comprehensive two-dimensional gas chromatography. J Chromatogr A. 2012;1226:116–23. https://doi.org/10.1016/j.chroma.2011.11.036.

    Article  CAS  PubMed  Google Scholar 

  19. Ghosh A, Bates CT, Seeley SK, Seeley JV. High speed Deans switch for low duty cycle comprehensive two-dimensional gas chromatography. J Chromatogr A. 2013;1291:146–54. https://doi.org/10.1016/j.chroma.2013.04.003.

    Article  CAS  PubMed  Google Scholar 

  20. Tranchida PQ, Franchina FA, Dugo P, Mondello L. Flow-modulation low-pressure comprehensive two-dimensional gas chromatography. J Chromatogr A. 2014;1372:236–44. https://doi.org/10.1016/j.chroma.2014.10.097.

    Article  CAS  Google Scholar 

  21. Mostafa A, Górecki T. Development and design of a single-stage cryogenic modulator for comprehensive two-dimensional gas chromatography. Anal Chem. 2016;88:5414–23. https://doi.org/10.1021/acs.analchem.6b00767.

    Article  CAS  PubMed  Google Scholar 

  22. Wohlfahrt S, Fischer M, Varga J, Saraji-Bozorgzad M, Matuschek G, Denner T, Zimmermann R. Dual-stage consumable-free thermal modulator for the hyphenation of thermal analysis, gas chromatography, and mass spectrometry. Anal Chem. 2016;88:640–4. https://doi.org/10.1021/acs.analchem.5b04183.

    Article  CAS  PubMed  Google Scholar 

  23. Luong J, Guan X, Xu S, Gras R, Shellie RA. Thermal independent modulator for comprehensive two-dimensional gas chromatography. Anal Chem. 2016;88:8428–32. https://doi.org/10.1021/acs.analchem.6b02525.

    Article  CAS  PubMed  Google Scholar 

  24. Seeley JV, Schimmel NE, Seeley SK. The multi-mode modulator: a versatile fluidic device for two-dimensional gas chromatography. J Chromatogr A. 2018;1536:6–15. https://doi.org/10.1016/j.chroma.2017.06.030.

    Article  CAS  PubMed  Google Scholar 

  25. Cai H, Stearns SD. A comprehensive two-dimensional gas chromatography valve modulation method using hold-release primary column flow for long secondary separation time with 100% transfer. J Chromatogr A. 2018;1569:200–11. https://doi.org/10.1016/j.chroma.2018.07.064.

    Article  CAS  PubMed  Google Scholar 

  26. Cai H, Stearns SD. Comprehensive two-dimensional gas chromatography using direct flow modulation to extend the secondary dimension separation time. J Chromatogr A. 2022;1669: 462930. https://doi.org/10.1016/j.chroma.2022.462930.

    Article  CAS  PubMed  Google Scholar 

  27. Venkatramani CJ, Xu J, Phillips JB. Separation orthogonality in temperature-programmed comprehensive two-dimensional gas chromatography. Anal Chem. 1996;68:1486–92. https://doi.org/10.1021/ac951048b.

    Article  CAS  PubMed  Google Scholar 

  28. Khummueng W, Harynuk J, Marriott PJ. Modulation ratio in comprehensive two-dimensional gas chromatography. Anal Chem. 2006;78:4578–87. https://doi.org/10.1021/ac052270b.

    Article  CAS  PubMed  Google Scholar 

  29. von Mühlen C, Marriott PJ. Retention indices in comprehensive two-dimensional gas chromatography. Anal Bioanal Chem. 2011;401:2351–60. https://doi.org/10.1007/s00216-011-5247-1.

    Article  CAS  Google Scholar 

  30. Krupčík J, Májek P, Gorovenko R, Špánik I, Sandra P, Armstrong DW. On the determination of a detector response enhancement factor for flow modulated comprehensive two-dimensional gas chromatography. J Chromatogr A. 2013;1286:235–40. https://doi.org/10.1016/j.chroma.2013.02.068.

    Article  CAS  PubMed  Google Scholar 

  31. Peroni D, Janssen HG. Comprehensive two-dimensional gas chromatography under high outlet pressure conditions: a new approach to correct the flow-mismatch issue in the two dimensions. J Chromatogr A. 2014;1332:57–63. https://doi.org/10.1016/j.chroma.2014.01.051.

    Article  CAS  PubMed  Google Scholar 

  32. Venter A, Rohwer ER. Comprehensive two-dimensional supercritical fluid and gas chromatography with independent fast programmed heating of the gas chromatographic column. Anal Chem. 2004;76:3699–706. https://doi.org/10.1021/ac035538c.

    Article  CAS  PubMed  Google Scholar 

  33. Cai H, Stearns SD, Koehn JA, Brisbin M. Fast Temperature programmed secondary column for comprehensive two-dimensional GC by using nickel tubing and direct resistive heating, Pittcon 2007, Abstract No. 2500–1.

  34. Chow HJ, Górecki T. Temperature programming of the second dimension in comprehensive two-dimensional gas chromatography. Anal Chem. 2017;89:8207–11. https://doi.org/10.1021/acs.analchem.7b02134.

    Article  CAS  PubMed  Google Scholar 

  35. Hail ME, Yost RA. Compact gas chromatograph probe for gas chromatography/mass spectrometry utilizing resistively heated aluminum-clad capillary columns. Anal Chem. 1989;61:2410–6. https://doi.org/10.1021/ac00196a018.

    Article  CAS  Google Scholar 

  36. Ehrmann EU, Dharmasena HP, Carney K, Overton EB. Novel column heater for fast capillary gas chromatography. J Chromatogr Sci. 1996;34:533–9. https://doi.org/10.1093/chromsci/34.12.533.

    Article  CAS  Google Scholar 

  37. Dalluge J, Ou-Aissa R, Vreuls JJ, Th BUA. Fast temperature programming in gas chromatography using resistive heating. J High Resol Chromatogr. 1999;22:459–64. https://doi.org/10.1002/(SICI)1521-4168(19990801)22:8%3c459::AID-JHRC459%3e3.0.CO;2-G.

    Article  CAS  Google Scholar 

  38. Sloan KM, Mustacich RV, Eckenrode BA. Development and evaluation of a low thermal mass gas chromatograph for rapid forensic GC–MS analyses. Field Anal Chem Technol. 2001;5(6):288–301. https://doi.org/10.1002/fact.10011.

    Article  CAS  Google Scholar 

  39. Reid VR, McBrady AD, Synovec RE. Investigation of high-speed gas chromatography using synchronized dual-valve injection and resistively heated temperature programming. J Chromatogr A. 2007;1148:236–43. https://doi.org/10.1016/j.chroma.2007.03.029.

    Article  CAS  PubMed  Google Scholar 

  40. Xu F, Guan W, Yao G, Guan Y. Fast temperature programming on a stainless-steel narrow-bore capillary column by direct resistive heating for fast gas chromatography. J Chromatogr A. 2008;1186:183–8. https://doi.org/10.1016/j.chroma.2007.08.063.

    Article  CAS  PubMed  Google Scholar 

  41. Stearns SD, Cai H, Koehn JA, Brisbin M, Cowles C, Bishop C, Puente S, Ashworth D. A direct resistively heated gas chromatography column with heating and sensing on the same nickel element. J Chromatogr A. 2010;1217:4629–38. https://doi.org/10.1016/j.chroma.2010.04.050.

    Article  CAS  PubMed  Google Scholar 

  42. Fialkov AB, Morag M, Amirav A. A low thermal mass fast gas chromatograph and its implementation in fast gas chromatography mass spectrometry with supersonic molecular beams. J Chromatogr A. 2011;1218:9375–83. https://doi.org/10.1016/j.chroma.2011.10.053.

    Article  CAS  PubMed  Google Scholar 

  43. Flaxer E, Alon E. Programmable smart fast gas chromatograph and open probe controller. J Chromatogr A. 2021;1657: 462576. https://doi.org/10.1016/j.chroma.2021.462576.

    Article  CAS  PubMed  Google Scholar 

  44. Wang A, Tolley HD, Lee ML. Gas chromatography using resistive heating technology. J Chromatogr A. 2012;1261:46–57. https://doi.org/10.1016/j.chroma.2012.05.021.

    Article  CAS  PubMed  Google Scholar 

  45. Boeker P, Leppert J. Flow Field Thermal gradient gas chromatography. Anal Chem. 2015;87:9033–41. https://doi.org/10.1021/acs.analchem.5b02227.

    Article  CAS  PubMed  Google Scholar 

  46. Fischer M, Wohlfahrt S, Varga J, Matuschek G, Mohammad R, Saraji-Bozorgzad MR, Denner T, Walte A, Zimmermann R. Optically heated ultra-fast-cycling gas chromatography module for separation of direct sampling and online monitoring applications. Anal Chem. 2015;87:8634–9. https://doi.org/10.1021/acs.analchem.5b01879.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge David Salge, VICI Graphic Design Group, for assistance in editing the paper and J&X Industries, for providing the GC × GC software—Canvas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huamin Cai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Comprehensive 2D Chromatography with guest editors Peter Q. Tranchida and Luigi Mondello.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Stearns, S.D. A fast temperature-programmed second-dimension column for comprehensive two-dimensional gas chromatography. Anal Bioanal Chem 415, 2435–2446 (2023). https://doi.org/10.1007/s00216-022-04443-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04443-3

Keywords

Navigation