Skip to main content
Log in

High-Temperature Two-Dimensional Gas Chromatography with Flow Modulator for Analyzing Complex Objects of Catalytic Processing

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

This paper is dedicated to the development of the method of high-temperature two-dimensional gas chromatography (HT-GC × GC) using a flow modulator for the analysis of a number of complex high-boiling samples. A method has been developed that allows to analyze complex samples with a temperature up to 360 °C using a combination of non-polar and mid-polar columns. We have achieved separations of such complex mixtures as products of thermal cracking of slack wax, vacuum gas oil (VGO) and the products of its processing, a product of catalytic processing of sludge sediments pyrolysate and products of polyethylene pyrolysis. The method makes it possible to achieve good resolution in the previously listed samples between the groups of aromatic and aliphatic hydrocarbons. In addition, the group of aliphatic hydrocarbons was resolved into separate constituent classes: alkanes, alkenes, alkadienes, and cycloalkanes. A good resolution was reached for sludge pyrolysis samples between the groups of polar compounds and aromatic and aliphatic hydrocarbons. Comparisons with other standardized methods illustrate the high potential of high-temperature two-dimensional gas chromatography for the analysis of high-boiling mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Murray JA (2012) Qualitative and quantitative approaches in comprehensive two-dimensional gas chromatography. J Chromatogr A 1261:58–68. https://doi.org/10.1016/j.chroma.2012.05.012

    Article  CAS  PubMed  Google Scholar 

  2. Prebihalo SE, Berrier KL, Freye CE, Daniel Bahaghighat H, Moore NR, Pinkerton DK, Synovec RE (2018) Multidimensional gas chromatography: advances in instrumentation, chemometrics, and applications. Anal Chem 90.1:505–532. https://doi.org/10.1021/acs.analchem.7b04226

    Article  CAS  Google Scholar 

  3. Dutriez T, Courtiade M, Thiébaut D, Dulot H, Bertoncini F, Vial J, Hennion M-C (2009) High-temperature two-dimensional gas chromatography of hydrocarbons up to nC60 for analysis of vacuum gas oils. J Chromatogr A 1216(14):2905–2912. https://doi.org/10.1016/j.chroma.2008.11.065

    Article  CAS  PubMed  Google Scholar 

  4. Weng Na, Wan S, Wang H, Zhang S, Zhu G, Liu J, Cai Di, Yang Y (2015) Insight into unresolved complex mixtures of aromatic hydrocarbons in heavy oil via two-dimensional gas chromatography coupled with time-of-flight mass spectrometry analysis. J Chromatogr A 1398:94–107. https://doi.org/10.1016/j.chroma.2015.03.057

    Article  CAS  PubMed  Google Scholar 

  5. Franchina FA, Machado ME, Tranchida PQ, Zini CA, Caramão EB, Mondello L (2015) Determination of aromatic sulphur compounds in heavy gas oil by using (low-) flow modulated comprehensive two-dimensional gas chromatography–triple quadrupole mass spectrometry. J Chromatogr A1387:86–94. https://doi.org/10.1016/j.chroma.2015.01.082

    Article  CAS  Google Scholar 

  6. Pierce KM, Schale SP (2011) Predicting percent composition of blends of biodiesel and conventional diesel using gas chromatography–mass spectrometry, comprehensive two-dimensional gas chromatography–mass spectrometry, and partial least squares analysis. Talanta 83.4:1254–1259. https://doi.org/10.1016/j.talanta.2010.07.084

    Article  CAS  Google Scholar 

  7. Noroska Gabriela Salazar Mogollon, Fabiana Alves de Lima Ribeiro, Monica Mamian Lopez, Leandro Wang Hantao, Ronei Jesus Poppi, Fabio Augusto (2013) Quantitative analysis of biodiesel in blends of biodiesel and conventional diesel by comprehensive two-dimensional gas chromatography and multivariate curve resolution. Anal Chim Acta 796: 130–136. https://doi.org/10.1016/j.aca.2013.07.071

  8. Blumberg LM, David F, Klee MS, Sandra P (2008) Comparison of one-dimensional and comprehensive two-dimensional separations by gas chromatography. J Chromatogr A 1188(1):2–16. https://doi.org/10.1016/j.chroma.2008.02.044

    Article  CAS  PubMed  Google Scholar 

  9. Patrushev YV (2015) Advantages of two-dimensional gas chromatography. Kinet Catal 56:386–393. https://doi.org/10.1134/S0023158415030155

    Article  CAS  Google Scholar 

  10. Robson WJ, Sutton PA, McCormack P, Chilcott NP, Rowland SJ (2017) Class type separation of the polar and apolar components of petroleum. Anal Chem 89.5:2919–2927. https://doi.org/10.1021/acs.analchem.6b04202

    Article  CAS  Google Scholar 

  11. Adahchour M, Beens J, Vreuls RJJ, Th UA (2006) Brinkman. Recent developments in comprehensive two-dimensional gas chromatography (GC×GC): II. Modulation and detection. TrAC Trends Anal Chem 25:540–553. https://doi.org/10.1016/j.trac.2006.04.004

    Article  CAS  Google Scholar 

  12. Duhamel C, Cardinael P, Peulon-Agasse V, Firor R, Pascaud L, Semard-Jousset G, Giusti P, Livadaris V (2015) Comparison of cryogenic and differential flow (forward and reverse fill/flush) modulators and applications to the analysis of heavy petroleum cuts by high-temperature comprehensive gas chromatography. J Chromatogr A 1387:95–103. https://doi.org/10.1016/j.chroma.2015.01.095

    Article  CAS  PubMed  Google Scholar 

  13. Górecki T, Harynuk J, Panić O (2004) The evolution of comprehensive two-dimensional gas chromatography (GC× GC). J Sep Sci 27(5–6):359–379. https://doi.org/10.1002/jssc.200301650

    Article  CAS  PubMed  Google Scholar 

  14. Potgieter H, de Coning P, Bekker R, Rohwer E, Amirav A (2019) The pre-separation of oxygen containing compounds in oxidised heavy paraffinic fractions and their identification by GC-MS with supersonic molecular beams. J Mass Spectrom 54(4):328–341. https://doi.org/10.1002/jms.4340

    Article  CAS  PubMed  Google Scholar 

  15. Fialkov AB, Morag M, Amirav A (2011) A low thermal mass fast gas chromatograph and its implementation in fast gas chromatography mass spectrometry with supersonic molecular beams. J Chromatogr A 1218(52):9375–9383. https://doi.org/10.1016/j.chroma.2011.10.053

    Article  CAS  PubMed  Google Scholar 

  16. Ristic ND, Djokic MR, Delbeke E, Gonzalez-Quiroga A, Stevens CV, Van Geem KM, Marin GB (2018) Compositional characterization of pyrolysis fuel oil from naphtha and vacuum gas oil. Energy Fuels 32(2):1276–1286. https://doi.org/10.1021/acs.energyfuels.7b03242

    Article  CAS  Google Scholar 

  17. Boursier L, Souchon V, Dartiguelongue C, Ponthus J, Courtiade M, Thiébaut D (2013) Complete elution of vacuum gas oil resins by comprehensive high-temperature two-dimensional gas chromatography. J Chromatogr A 1280:98–103. https://doi.org/10.1016/j.chroma.2012.12.059

    Article  CAS  PubMed  Google Scholar 

  18. Mahé L, Dutriez T, Courtiade M, Thiébaut D, Dulot H, Bertoncini F (2011) Global approach for the selection of high temperature comprehensive two-dimensional gas chromatography experimental conditions and quantitative analysis in regards to sulfur-containing compounds in heavy petroleum cuts. J Chromatogr A 1218(3):534–544. https://doi.org/10.1016/j.chroma.2010.11.065

    Article  CAS  PubMed  Google Scholar 

  19. Dutriez T, Borras J, Courtiade M, Thiébaut D, Dulot H, Bertoncini F, Hennion M-C (2011) Challenge in the speciation of nitrogen-containing compounds in heavy petroleum fractions by high temperature comprehensive two-dimensional gas chromatography. J Chromatogr A 1218(21):3190–3199. https://doi.org/10.1016/j.chroma.2010.10.056

    Article  CAS  PubMed  Google Scholar 

  20. Boswell HA, Edwards M, Górecki T (2020) Comparison of thermal and flow-based modulation in comprehensive two-dimensional gas chromatography—time-of-flight mass spectrometry (GC× GC-TOFMS) for the analysis of base oils. Separations 7.4:70. https://doi.org/10.3390/separations7040070

    Article  CAS  Google Scholar 

  21. Seeley JV, Kramp F, Christine J (2000) Hicks. Comprehensive two-dimensional gas chromatography via differential flow modulation. Anal Chem 72.18:4346–4352. https://doi.org/10.1021/ac000249z

    Article  CAS  Google Scholar 

  22. Seeley John V, Micyus Nicole J, McCurry James D, Seeley Stacy K (2006) "Comprehensive two-dimensional gas chromatography with a simple fluidic modulator". Chemistry & Biochemistry Publications. 93

  23. Griffith JF, Winniford WL, Sun K, Edam R, Luong JC (2012) A reversed-flow differential flow modulator for comprehensive two-dimensional gas chromatography. J Chromatogr A 1226:116–123. https://doi.org/10.1016/j.chroma.2011.11.036

    Article  CAS  PubMed  Google Scholar 

  24. Semard G, Gouin C, Bourdet J, Bord N, Livadaris V (2011) Comparative study of differential flow and cryogenic modulators comprehensive two-dimensional gas chromatography systems for the detailed analysis of light cycle oil. J Chromatogr A 1218(21):3146–3152. https://doi.org/10.1016/j.chroma.2010.08.082

    Article  CAS  PubMed  Google Scholar 

  25. Keshet U, Fialkov AB, Alon T, Amirav A (2016) A new pulsed flow modulation GC× GC–MS with Cold EI system and its application for jet fuel analysis. Chromatographia 79(11):741–754. https://doi.org/10.1007/s10337-016-3087-z

    Article  CAS  Google Scholar 

  26. Piparo M, Flamant L, Jousset G, Cardinael P, Giusti P (2020) Careful investigations of PTV injection parameters for the analysis of vacuum gas oil by high-temperature comprehensive GC×GC. Energy Fuels 34(10):12010–12017. https://doi.org/10.1021/acs.energyfuels.0c01314

    Article  CAS  Google Scholar 

  27. Wang C, Firor R, Tripp P (2008) Fast hydrocarbon and sulfur simulated distillation using the agilent low thermal mass (LTM) System on the 7890A GC and 355 Sulfur Chemiluminescence Detector. P. 1–8. https://www.agilent.com/cs/library/applications/5990-3237EN.pdf. Accessed 5 Dec 2008

  28. Sholokhova AYu, Shashkov MV, Patrushev YuV, Matyushin DD, Zhdanov AA, Dolgushev PA, Buryak AK (2021) Comprehensive analysis of the liquid fraction of car tire pyrolysis products by gas chromatography-mass spectrometry. Russ J Appl Chem 94:122–128. https://doi.org/10.1134/S1070427221010183

    Article  CAS  Google Scholar 

  29. Biedermann M, Barp L, Kornauth C, Würger T, Rudas M, Reiner A, Concin N, Grob K (2015) Mineral oil in human tissues, Part II: Characterization of the accumulated hydrocarbons by comprehensive two-dimensional gas chromatography. Sci Total Environ 506:644–655. https://doi.org/10.1016/j.scitotenv.2014.07.038

    Article  CAS  PubMed  Google Scholar 

  30. Alberto dos Santos Pereira, Monica Costa Padilha, Francisco Radler de Aquino Neto (2004) Two decades of high temperature gas chromatography (1983–2003): what's next? Microchem J 77(2):141–149. https://doi.org/10.1016/j.microc.2004.02.008

  31. GC consumables SGE catalog (2020)

  32. GC consumables Agilent catalog (2020)

  33. Fialkov AB, Gordin A, Amirav A (2003) Extending the range of compounds amenable for gas chromatography–mass spectrometric analysis. J Chromatogr A 991(2):217–240. https://doi.org/10.1016/S0021-9673(03)00247-4

    Article  CAS  PubMed  Google Scholar 

  34. Shashkov MV, Sidelnikov VN, Bratchikova AA (2020) New stationary ionic liquid phases with quinolinium cations for capillary gas chromatography. Anal Lett 53:84–101. https://doi.org/10.1080/00032719.2019.1638393

    Article  CAS  Google Scholar 

  35. González-Álvarez J, Arias-Abrodo P, Puerto M, Viguri ME, Perez J, Gutiérrez-Álvarez MD (2015) Polymerized phosphonium-based ionic liquids as stationary phases in gas chromatography: performance improvements by addition of graphene oxide. New J Chem 39:8560–8568. https://doi.org/10.1039/c5nj01842k

    Article  Google Scholar 

  36. Kulsing C, Nolvachai Y, Marriott PJ (2020) Concepts, selectivity options and experimental design approaches in multidimensional and comprehensive two-dimensional gas chromatography. TrAC Trends Anal Chem 130:115995. https://doi.org/10.1016/j.trac.2020.115995

    Article  CAS  Google Scholar 

  37. Dutriez T, Courtiade M, Thiébaut D, Dulot H, Hennion M-C (2010) Improved hydrocarbons analysis of heavy petroleum fractions by high temperature comprehensive two-dimensional gas chromatography. Fuel 89(9):2338–2345. https://doi.org/10.1016/j.fuel.2009.11.041

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation (project # AAAAA21-121011390053-4). The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel A. Dolgushev.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. All data generated or analyzed during this study are included in this published article. More data are available on request from the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgushev, P.A., Shashkov, M.V. High-Temperature Two-Dimensional Gas Chromatography with Flow Modulator for Analyzing Complex Objects of Catalytic Processing. Chromatographia 86, 267–283 (2023). https://doi.org/10.1007/s10337-022-04210-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-022-04210-7

Keywords

Navigation