Skip to main content
Log in

Disposable stainless steel working electrodes for sensitive and simultaneous detection of indole-3-acetic acid and salicylic acid in Arabidopsis thaliana leaves under biotic stresses

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The detection of phytohormones in real time has attracted increasing attention because of their critical roles in regulating the development and signaling of plants, especially in defense against biotic stresses. Herein, stainless steel sheet electrodes modified with carbon cement were coupled with paper-based analysis devices for direct and simultaneous detection of salicylic acid (SA) and indole-3-acetic acid (IAA) in plants. We demonstrated that the excellent conductivity of stainless steel sheet electrodes enabled us to simultaneously differentiate IAA and SA at a level of 10 nM. With our approach, the content of IAA and SA in Arabidopsis thaliana leaves infected or not infected with Pst DC3000 could be rapidly quantified at the same time. Our experimental results on differentiation of IAA and SA at different time points showed that there were antagonistic interactions between the IAA and SA after infection of Arabidopsis leaves with Pst DC3000. By offering a cost-effective approach for rapid and sensitive detection of IAA and SA, this study suggests that electrochemical detection can be used in the study and development of precision agriculture technology.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ning YS, Liu WD, Wang GL. Balancing immunity and yield in crop plants. Trends Plant Sci. 2017;22(12):1069–79. https://doi.org/10.1016/j.tplants.2017.09.010.

    Article  CAS  PubMed  Google Scholar 

  2. Berens ML, Berry HM, Mine A, Argueso CT, Tsuda K. Evolution of hormone signaling networks in plant defense. In: leach JE, Lindow SE (eds) Annu. Rev Phytopathol. 2017;55:401–25. https://doi.org/10.1146/annurev-phyto-080516-035544.

    Article  CAS  Google Scholar 

  3. Janda M, Ruelland E. Magical mystery tour: salicylic acid signalling. Environ Exp Bot. 2015;114:117–28. https://doi.org/10.1016/j.envexpbot.2014.07.003.

    Article  CAS  Google Scholar 

  4. Kumar D. Salicylic acid signaling in disease resistance. Plant Sci. 2014;228:127–34. https://doi.org/10.1016/j.plantsci.2014.04.014.

    Article  CAS  PubMed  Google Scholar 

  5. Yan SP, Dong XN. Perception of the plant immune signal salicylic acid. Curr Opin Plant Biol. 2014;20:64–8. https://doi.org/10.1016/j.pbi.2014.04.006.

    Article  CAS  PubMed  Google Scholar 

  6. Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444(7117):323–9. https://doi.org/10.1038/nature05286.

    Article  CAS  PubMed  Google Scholar 

  7. Spoel SH, Dong XN. How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol. 2012;12(2):89–100. https://doi.org/10.1038/nri3141.

    Article  CAS  PubMed  Google Scholar 

  8. Bar M, Ori N. Leaf development and morphogenesis. Development. 2014;141(22):4219–30. https://doi.org/10.1242/dev.106195.

    Article  CAS  PubMed  Google Scholar 

  9. Kazan K, Manners JM. Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci. 2009;14(7):373–82. https://doi.org/10.1016/j.tplants.2009.04.005.

    Article  CAS  PubMed  Google Scholar 

  10. Lavy M, Estelle M. Mechanisms of auxin signaling. Development. 2016;143(18):3226–9. https://doi.org/10.1242/dev.131870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Naseem M, Srivastava M, Tehseen M, Ahmed N. Auxin crosstalk to plant immune networks: a plant-pathogen interaction perspective. Curr Protein Pept Sci. 2015;16(5):389–94. https://doi.org/10.2174/1389203716666150330124911.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao YD. Auxin biosynthesis and its role in plant development. In: Merchant S, Briggs WR, Ort D (eds) Annu Rev Plant Biol. 2010;61:49-64. https://doi.org/10.1146/annurev-arplant-042809-112308.

  13. Zhao YD. Auxin biosynthesis: a simple two-step pathway converts tryptophan to Indole-3-acetic acid in plants. Mol Plant. 2012;5(2):334–8. https://doi.org/10.1093/mp/ssr104.

    Article  CAS  PubMed  Google Scholar 

  14. Bowling SA, Clarke JD, Liu YD, Klessig DF, Dong XN. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell. 1997;9(9):1573–84. https://doi.org/10.1105/tpc.9.9.1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clarke JD, Liu YD, Klessig DF, Dong XN. Uncoupling PR gene expression from NPR1 and bacterial resistance: characterization of the dominant Arabidopsis cpr6-1 mutant. Plant Cell. 1998;10(4):557–69. https://doi.org/10.1105/tpc.10.4.557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li X, Clarke JD, Zhang YL, Dong XN. Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance. Mol Plant Microbe Inter. 2001;14(10):1131–9. https://doi.org/10.1094/mpmi.2001.14.10.1131.

    Article  CAS  Google Scholar 

  17. Abreu ME, Munne-Bosch S. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. J Exp Bot. 2009;60(4):1261–71. https://doi.org/10.1093/jxb/ern363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang D, Pajerowska-Mukhtar K, Culler AH, Dong XN. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol. 2007;17(20):1784–90. https://doi.org/10.1016/j.cub.2007.09.025.

    Article  CAS  PubMed  Google Scholar 

  19. Du FY, Ruan GH, Liu HW. Analytical methods for tracing plant hormones. Anal Bioanal Chem. 2012;403(1):55–74. https://doi.org/10.1007/s00216-011-5623-x.

    Article  CAS  PubMed  Google Scholar 

  20. Sun LJ, Xie Y, Yan YF, Yang HB, Gu HY, Bao N. Paper-based analytical devices for direct electrochemical detection of free IAA and SA in plant samples with the weight of several milligrams. Sens. Actuators B Chem. 2017;247:336–42. https://doi.org/10.1016/j.snb.2017.03.025.

    Article  CAS  Google Scholar 

  21. Sun LJ, Zhou JJ, Pan JL, Liang YY, Fang ZJ, Xie Y, et al. Electrochemical mapping of indole-3-acetic acid and salicylic acid in whole pea seedlings under normal conditions and salinity. Sens. Actuators B Chem. 2018;276:545–51. https://doi.org/10.1016/j.snb.2018.08.152.

    Article  CAS  Google Scholar 

  22. Kitte SA, Li SP, Nsabimana A, Gao WY, Lai JP, Liu ZY, et al. Stainless steel electrode for simultaneous stripping analysis of cd(II), Pb(II), cu(II) and hg(II). Talanta. 2019;191:485–90. https://doi.org/10.1016/j.talanta.2018.08.066.

    Article  CAS  PubMed  Google Scholar 

  23. Huo DD, Li DD, Xu SZ, Tang YJ, Xie XQ, Li DY, et al. Disposable stainless-steel wire-based electrochemical microsensor for in vivo continuous monitoring of hydrogen peroxide in vein of tomato leaf. Biosensors-Basel. 2022;12(1). https://doi.org/10.3390/bios12010035.

  24. Lo KH, Shek CH, Lai JKL. Recent developments in stainless steels. Mater Sci Eng R Rep. 2009;65(4-6):39–104. https://doi.org/10.1016/j.mser.2009.03.001.

    Article  CAS  Google Scholar 

  25. Hedberg Y, Karlsson ME, Blomberg E, Wallinder IO, Hedberg J. Correlation between surface physicochemical properties and the release of iron from stainless steel AISI 304 in biological media. Colloids Surf B Biointerfaces. 2014;122:216–22. https://doi.org/10.1016/j.colsurfb.2014.06.066.

    Article  CAS  PubMed  Google Scholar 

  26. Rezaei B, Havakeshian E, Ensafi AA. Decoration of nanoporous stainless steel with nanostructured gold via galvanic replacement reaction and its application for electrochemical determination of dopamine. Sens. Actuators B Chem. 2015;213:484–92. https://doi.org/10.1016/j.snb.2015.02.106.

    Article  CAS  Google Scholar 

  27. Rezaei B, Shams-Ghahfarokhi L, Havakeshian E, Ensafi AA. An electrochemical biosensor based on nanoporous stainless steel modified by gold and palladium nanoparticles for simultaneous determination of levodopa and uric acid. Talanta. 2016;158:42–50. https://doi.org/10.1016/j.talanta.2016.04.061.

    Article  CAS  PubMed  Google Scholar 

  28. Huo XL, Qi JF, He KC, Bao N, Shi CG. Stainless steel sheets as the substrate of disposable electrochemical sensors for analysis of heavy metals or biomolecules. Anal Chim Acta. 2020;1124:32–9. https://doi.org/10.1016/j.aca.2020.05.018.

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki M, Yamazaki C, Mitsui M, Kakei Y, Mitani Y, Nakamura A, et al. Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis. Plant Cell Rep. 2015;34(8):1343–52. https://doi.org/10.1007/s00299-015-1791-z.

    Article  CAS  PubMed  Google Scholar 

  30. Seguel A, Jelenska J, Herrera-Vasquez A, Marr SK, Joyce MB, Gagesch KR, et al. PROHIBITIN3 forms complexes with ISOCHORISMATE SYNTHASE1 to regulate stress-induced salicylic acid biosynthesis in Arabidopsis. Plant Physiol. 2018;176(3):2515–31. https://doi.org/10.1104/pp.17.00941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang PX, Dong Z, Guo PR, Zhang X, Qiu YP, Li BS, et al. Salicylic acid suppresses apical hook formation via NPR1-mediated repression of EIN3 and EIL1 in Arabidopsis. Plant Cell. 2020;32(3):612–29. https://doi.org/10.1105/tpc.19.00658.

    Article  CAS  PubMed  Google Scholar 

  32. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang GF, Zhao F, Chen YQ, Pan Y, Sun LJ, Bao N, et al. Jasmonate-mediated wound signalling promotes plant regeneration. Nature Plants. 2019;5(5):491–7. https://doi.org/10.1038/s41477-019-0408-x.

    Article  CAS  PubMed  Google Scholar 

  34. Sun LJ, Pan ZQ, Xie J, Liu XJ, Sun FT, Song FM, et al. Electrocatalytic activity of salicylic acid on au@Fe3O4 nanocomposites modified electrode and its detection in tomato leaves infected with Botrytis cinerea. J Electroanal Chem. 2013;706:127–32. https://doi.org/10.1016/j.jelechem.2013.07.038.

    Article  CAS  Google Scholar 

  35. Sun LJ, Feng QM, Yan YF, Pan ZQ, Li XH, Song FM, et al. Paper-based electroanalytical devices for in situ determination of salicylic acid in living tomato leaves. Biosens Bioelectron. 2014;60:154–60. https://doi.org/10.1016/j.bios.2014.04.021.

    Article  CAS  PubMed  Google Scholar 

  36. Sun LJ, Liu XJ, Gao L, Lu YN, Li YB, Pan ZQ, et al. Simultaneous electrochemical determination of Indole-3-acetic acid and salicylic acid in pea roots using a multiwalled carbon nanotube modified electrode. Anal Lett. 2015;48(10):1578–92. https://doi.org/10.1080/00032719.2014.991963.

    Article  CAS  Google Scholar 

  37. Wang HR, Bi XM, Fang ZJ, Yang HB, Gu HY, Sun LJ, et al. Real time sensing of salicylic acid in infected tomato leaves using carbon tape electrodes modified with handed pencil trace. Sens Actuators B Chem. 2019;286:104–10. https://doi.org/10.1016/j.snb.2019.01.119.

    Article  CAS  Google Scholar 

  38. Wang Z, Ai F, Xu Q, Yang Q, Yu JH, Huang WH, et al. Electrocatalytic activity of salicylic acid on the platinum nanoparticles modified electrode by electrochemical deposition. Colloids Surf B Biointerfaces. 2010;76(1):370–4. https://doi.org/10.1016/j.colsurfb.2009.10.038.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Z, Wei F, Liu SY, Xu Q, Huang JY, Dong XY, et al. Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta. 2010;80(3):1277–81. https://doi.org/10.1016/j.talanta.2009.09.023.

    Article  CAS  PubMed  Google Scholar 

  40. Gan T, Hu CG, Chen ZL, Hu SS. A disposable electrochemical sensor for the determination of indole-3-acetic acid based on poly(safranine T)-reduced graphene oxide nanocomposite. Talanta. 2011;85(1):310–6. https://doi.org/10.1016/j.talanta.2011.03.070.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos: 31770399, 21974012 and 32070397), the Natural Science Foundation of Jiangsu Province (Nos: BK20130389), the project of Nantong Natural Science Foundation (MS22021038), Qing Lan Project of Jiangsu Province, Six talent peaks project in Jiangsu Province (No: SWYY-061), and the science and technology innovation project of Jiangsu Province (202110304080Y).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Lijun Sun and Ning Bao; Methodology, Ling Sun, Songzhi Xu, and Yihui Tang; Validation, Yihui Tang; Formal analysis, Ling Sun, Yuhang Zhou and Meng Wang; Investigation, Xinyu Zhu; Data curation, Guangxi Li and Yuhang Zhou; Writing-original draft preparation, Ling Sun, Songzhi Xu and Lijun Sun; Writing-review and editing, Songzhi Xu, Lijun Sun and Ning Bao; Visualization, Xinyu Zhu and Yiran Tian; Supervision and project administration, Lijun Sun; Funding acquisition, Lijun Sun. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Xinyu Zhu, Ning Bao or Lijun Sun.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Xu, S., Tang, Y. et al. Disposable stainless steel working electrodes for sensitive and simultaneous detection of indole-3-acetic acid and salicylic acid in Arabidopsis thaliana leaves under biotic stresses. Anal Bioanal Chem 414, 7721–7730 (2022). https://doi.org/10.1007/s00216-022-04303-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04303-0

Keywords

Navigation