Skip to main content
Log in

Responsive hydrogel-based three-dimensional photonic crystal sensor for lactic acid detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The determination of lactic acid content has a guiding significance for disease diagnosis or food supervision. Herein, a hydrogel-based three-dimensional photonic crystal (PC) sensor for specific detection of lactic acid is introduced. The hydrogel was prepared by one-step copolymerization of N-isopropylacrylamide and acrylamide in the presence of oxamate derivative 2-((6-acrylamidohexyl) amino)-2-oxoacetic acid (AOA). An obvious color change from orange-red to purple and a 45-nm redshift of the reflection peak were obtained in 3 min when lactic acid concentration increased from 0 to 20 mM. The detection limit was confirmed as 0.1 mM, and the prepared sensor can be reused more than 20 times. Moreover, the affinity and selectivity of AOA to lactic acid were proven by both the interaction energy from density functional theory (DFT) study and the comparison to those of pyruvate and propionic acid. This sensor was proven to be cost-effective and convenient with rapid response time, good reusability, and selectivity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfor K, Rofstad EK, et al. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 2000;60:916–21.

    CAS  PubMed  Google Scholar 

  2. Brooks GA. Lactate production under fully aerobic conditions - the lactate shuttle during rest and exercise. Faseb J. 1986;45:2924–9.

    CAS  Google Scholar 

  3. Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, et al. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol. 2001;51:349–53. https://doi.org/10.1016/S0360-3016(01)01630-3.

    Article  CAS  Google Scholar 

  4. Romero-Garcia S, Moreno-Altamirano MMB, Prado-Garcia H, Javier S-G. Lactate contribution to the tumor microenvironment: mechanisms, effects on immune cells and therapeutic relevance. Front Immunol. 2016;7:52. https://doi.org/10.3389/fimmu.2016.00052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rani R, Kumar V. Recent update on human lactate dehydrogenase enzyme 5 (hldh5) inhibitors: a promising approach for cancer chemotherapy. J Med Chem. 2016;59:487–96. https://doi.org/10.1021/acs.jmedchem.5b00168.

    Article  CAS  PubMed  Google Scholar 

  6. Pundir CS, Narwal V, Batra B. Determination of lactic acid with special emphasis on biosensing methods: a review. Biosens Bioelectron. 2016;86:777–90. https://doi.org/10.1016/j.bios.2016.07.076.

    Article  CAS  PubMed  Google Scholar 

  7. Feng S, Xiang S, Bian X, Li G. Quantitative analysis of total acidity in aqueous lactic acid solutions by direct potentiometric titration. Microchem J. 2020;157: 105049. https://doi.org/10.1016/j.microc.2020.105049.

    Article  CAS  Google Scholar 

  8. Hussain KK, Gurudatt NG, Akhtar MH, Seo KD, Park DS, Shim YB. Nano-biosensor for the in vitro lactate detection using bi-functionalized conducting polymer/N, S-doped carbon; the effect of αCHC inhibitor on lactate level in cancer cell lines. Biosens Bioelectron. 2020;155: 112094. https://doi.org/10.1016/j.bios.2020.112094.

    Article  CAS  PubMed  Google Scholar 

  9. Parra-Alfambra AM, Casero E, Vázquez L, Quintana C, del Pozo M, Petit-Domínguez MD. MoS2 nanosheets for improving analytical performance of lactate biosensors. Sensor Actuat B Chem. 2018;274:310–7. https://doi.org/10.1016/j.snb.2018.07.124.

    Article  CAS  Google Scholar 

  10. Zhou D, Zeng K, Yang M. Gold nanoparticle-loaded hollow Prussian Blue nanoparticles with peroxidase-like activity for colorimetric determination of L-lactic acid. Microchim Acta. 2019;186:121. https://doi.org/10.1007/s00604-018-3214-7.

    Article  CAS  Google Scholar 

  11. Wu FQ, Huang YM, Huang CZ. Chemiluminescence biosensor system for lactic acid using natural animal tissue as recognition element. Biosens Bioelectron. 2005;21:518–22. https://doi.org/10.1016/j.bios.2004.10.029.

    Article  CAS  PubMed  Google Scholar 

  12. Fenzl C, Hirsch T, Wolfbeis OS. Photonic crystals for chemical sensing and biosensing. Angew Chem Int Edit. 2014;53:3318–35. https://doi.org/10.1002/anie.201307828.

    Article  CAS  Google Scholar 

  13. Chen W, Shea KJ, Xue M, Qiu L, Lan Y, Meng Z. Self-assembly of the polymer brush-grafted silica colloidal array for recognition of proteins. Anal Bioanal Chem. 2017;409:5319–26. https://doi.org/10.1007/s00216-017-0477-5.

    Article  CAS  PubMed  Google Scholar 

  14. Fenzl C, Genslein C, Zopfl A, Baeumner AJ, Hirsch T. A photonic crystal based sensing scheme for acetylcholine and acetylcholinesterase inhibitors. J Mater Chem B. 2015;3:2089–95. https://doi.org/10.1039/c4tb01970a.

    Article  CAS  PubMed  Google Scholar 

  15. Asher SA, Alexeev VL, Goponenko AV, Sharma AC, Lednev IK, Wilcox CS, et al. Photonic crystal carbohydrate sensors: low ionic strength sugar sensing. J Am Chem Soc. 2003;125:3322–9. https://doi.org/10.1021/ja021037h.

    Article  CAS  PubMed  Google Scholar 

  16. Sharma AC, Jana T, Kesavamoorthy R, Shi L, Virji MA, Finegold DN, et al. A general photonic crystal sensing motif: creatinine in bodily fluids. J Am Chem Soc. 2004;126:2971–7. https://doi.org/10.1021/ja038187s.

    Article  CAS  PubMed  Google Scholar 

  17. Qin J, Li X, Cao L, Du S, Wang W, Yao SQ. Competition-based universal photonic crystal biosensors by using antibody-antigen interaction. J Am Chem Soc. 2020;142:417–23. https://doi.org/10.1021/jacs.9b11116.

    Article  CAS  PubMed  Google Scholar 

  18. Hu X, Li G, Li M, Huang J, Li Y, Gao Y, et al. Ultrasensitive specific stimulant assay based on molecularly imprinted photonic hydrogels. Adv Funct Mater. 2008;18:575–83. https://doi.org/10.1002/adfm.200700527.

    Article  CAS  Google Scholar 

  19. Fruehauf KR, Kim TI, Nelson EL, Patterson JP, Wang SW, et al. Metabolite responsive nanoparticle-protein complex. Biomacromol. 2019;20:2703–12. https://doi.org/10.1021/acs.biomac.9b00470.

    Article  CAS  Google Scholar 

  20. Murtaza G, Rizvi AS, Irfan M, Yan D, Khan RU, Rafique B, et al. Glycated albumin based photonic crystal sensors for detection of lipopolysaccharides and discrimination of Gram-negative bacteria. Anal Chim Acta. 2020;1117:1–8. https://doi.org/10.1016/j.aca.2020.04.018.

    Article  CAS  PubMed  Google Scholar 

  21. Lin Z, Li L, Fu G, Lai Z, Peng A, Huang Z. Molecularly imprinted polymer-based photonic crystal sensor array for the discrimination of sulfonamides. Anal Chim Acta. 2020;1101:32–40. https://doi.org/10.1016/j.aca.2019.12.032.

    Article  CAS  PubMed  Google Scholar 

  22. Lu T. molclus program. Version 1.9.6. http://www.keinsci.com/research/molclus.html. Accessed 12 Jul 2020.

  23. Stewart JJP. MOPAC2016. Stewart Computational Chemistry: Colorado Springs, CO: USA, http://OpenMOPAC.net. Accessed 28 Jul 2020.

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 16, Revision B.01. Wallingford, CT: Gaussian Inc.; 2016. Accessed 29 Oct 2018.

  25. Tang X, Sun A, Chu C, Wang C, Liu Z, Guo J, et al. Highly sensitive multiresponsive photonic hydrogels based on a crosslinked acrylamide-N-isopropylacrylamide (AM-NIPAM) co-polymer containing Fe3O4@C crystalline colloidal arrays. Sensor Actuat B Chem. 2016;236:399–407. https://doi.org/10.1016/j.snb.2016.06.015.

    Article  CAS  Google Scholar 

  26. Otsu T, Inoue M, Yamada B, Mori T. Structure and reactivity of vinyl monomers: radical reactivities of N-substituted acrylamides and methacrylamides. J Polym Sci Polym Lett Ed. 1975;13:505–10. https://doi.org/10.1002/pol.1975.130130811.

    Article  CAS  Google Scholar 

  27. Hong W, Yuan Z, Chen X. Structural color materials for optical anticounterfeiting. Small. 2020;16:1907626. https://doi.org/10.1002/smll.201907626.

    Article  CAS  Google Scholar 

  28. Guo C, Zhou C, Sai N, Ning B, Liu M, Chen H, et al. Detection of bisphenol A using an opal photonic crystal sensor. Sensor Actuat B Chem. 2012;166–167:17–23. https://doi.org/10.1016/j.snb.2011.10.082.

    Article  CAS  Google Scholar 

  29. Liao J, Zhu C, Gao B, Zhao Z, Liu X, Tian L, et al. Multiresponsive elastic colloidal crystals for reversible structural color patterns. Adv Funct Mater. 2019;29:1902954. https://doi.org/10.1002/adfm.201902954.

    Article  CAS  Google Scholar 

  30. Kucherenko IS, Topolnikova YV, Soldatkin OO. Advances in the biosensors for lactate and pyruvate detection for medical applications: a review. TrAC-Trend Anal Chem. 2019;110:160–72. https://doi.org/10.1016/j.trac.2018.11.004.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number 21874009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Xue.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Liu, S., Mbola, N.M. et al. Responsive hydrogel-based three-dimensional photonic crystal sensor for lactic acid detection. Anal Bioanal Chem 414, 7695–7704 (2022). https://doi.org/10.1007/s00216-022-04300-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04300-3

Keywords

Navigation