Skip to main content
Log in

Analysis of volatile organic compounds from deep airway in the lung through intubation sampling

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Exhaled volatile organic compounds (VOCs) have been widely applied for the study of disease biomarkers. Oral exhalation and nasal exhalation are two of the most common sampling methods. However, VOCs released from food residues and bacteria in the mouth or upper respiratory tract were also sampled and usually mistaken as that produced from body metabolism. In this study, exhalation from deep airway was first directly collected through intubation sampling and analyzed. The exhalation samples of 35 subjects were collected through a catheter, which was inserted into the trachea or bronchus through the mouth and upper respiratory tract. Then, the VOCs in these samples were detected by proton transfer reaction mass spectrometry (PTR-MS). In addition, fast gas chromatography proton transfer reaction mass spectrometry (FGC-PTR-MS) was used to further determine the VOCs with the same mass-to-charge ratios. The results showed that there was methanol, acetonitrile, ethanol, methyl mercaptan, acetone, isoprene, and phenol in the deep airway. Compared with that in oral exhalation, ethanol, methyl mercaptan, and phenol had lower concentrations. In detail, the median concentrations of ethanol, methyl mercaptan, and phenol were 7.3, 0.6, and 23.9 ppbv, while those in the oral exhalation were 80.0, 5.1, and 71.3 ppbv, respectively, which meant the three VOCs mainly originated from the food residues and bacteria in the mouth or upper respiratory tract, rather than body metabolism. The research results in our study can provide references for expiratory VOC research based on oral and nasal exhalation samplings, which are more feasible in clinical practice.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berna AZ, John ARO. Breath metabolites to diagnose infection. Clin Chem. 2022;68(1):43–51.

    Google Scholar 

  2. Haick H, Broza YY, Mochalski P, Ruzsanyi V, Amann A. Assessment, origin, and implementation of breath volatile cancer markers. Chem Soc Rev. 2014;43(5):1423–49.

    CAS  PubMed  Google Scholar 

  3. Zou X, Zhou WZ, Lu Y, Shen CY, Hu ZT, Wang HZ, Jiang HH, Chu YN. Exhaled gases online measurements for esophageal cancer patients and healthy people by proton transfer reaction mass spectrometry. J Gastroenterol Hepatol. 2016;31(11):1837–43.

    CAS  PubMed  Google Scholar 

  4. Haworth JJ, Pitcher CK, Ferrandino G, Hobson AR, Pappan KL, Lawson JLD. Breathing new life into clinical testing and diagnostics: perspectives on volatile biomarkers from breath. Crit Rev Cl Lab Sci. 2022;59(5):353–72.

    CAS  Google Scholar 

  5. Benjamin O, Silcock P, Beauchamp J, Buettner A, Everett DW. Tongue pressure and oral conditions affect volatile release from liquid systems in a model mouth. J Agric Food Chem. 2012;60(39):9918–27.

    CAS  PubMed  Google Scholar 

  6. Pereira JAM, Porto-Figueira P, Taware R, Sukul P, Rapole S, Camara JS. Unravelling the potential of salivary volatile metabolites in oral diseases. A review Molecules. 2020;25(13):3098.

    CAS  PubMed  Google Scholar 

  7. Phan J, Meinardi S, Barletta B, Blake DR, Whiteson K. Stable isotope profiles reveal active production of VOCs from human-associated microbes. J Breath Res. 2017;11(1): 017101.

    PubMed  Google Scholar 

  8. Bouza M, Gonzalez-Soto J, Pereiro R, de Vicente JC, Sanz-Medel A. Exhaled breath and oral cavity VOCs as potential biomarkers in oral cancer patients. J Breath Res. 2017;11(1): 016015.

    CAS  PubMed  Google Scholar 

  9. Laumbach RJ, Fiedler N, Gardner CR, Laskin DL, Fan ZH, Zhang JF, Weschler CJ, Lioy PJ, Devlin RB, Ohman-Strickland P, Kelly-McNeil K, Kipen HM. Nasal effects of a mixture of volatile organic compounds and their ozone oxidation products. J Occup Environ Med. 2005;47(11):1182–9.

    CAS  PubMed  Google Scholar 

  10. Xiang LJ, Wu SH, Hua QL, Bao CY, Liu H. Volatile organic compounds in human exhaled breath to diagnose gastrointestinal cancer: a meta-analysis. Front Oncol. 2021;11: 606915.

    PubMed  PubMed Central  Google Scholar 

  11. De Vincentis A, Vespasiani-Gentilucci U, Sabatini A, Antonelli-Incalzi R, Picardi A. Exhaled breath analysis in hepatology: state-of-the-art and perspectives. World J Gastroentero. 2019;25(30):4043–50.

    Google Scholar 

  12. Haddadi S, Koziel JA, Engelken TJ. Analytical approaches for detection of breath VOC biomarkers of cattle diseases -a review. Anal Chim Acta. 2022;1206: 339565.

    CAS  PubMed  Google Scholar 

  13. Dixit K, Fardindoost S, Ravishankara A, Tasnim N, Hoorfar M. Exhaled breath analysis for diabetes diagnosis and monitoring: relevance, challenges and possibilities. Biosensors-Basel. 2021;11(12):476.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun XH, Shao K, Wang T. Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis. Anal Bioanal Chem. 2016;408(11):2759–80.

    CAS  PubMed  Google Scholar 

  15. Jia Z, Patra A, Kutty VK, Venkatesan T. Critical review of volatile organic compound analysis in breath and in vitro cell culture for detection of lung cancer. Metabolites. 2019;9(3):1–17.

    Google Scholar 

  16. Phillips M, Cataneo RN, Cummin ARC, Gagliardi AJ, Gleeson K, Greenberg J, Maxfield RA, Rom WN. Detection of lung cancer with volatile markers in the breath. Chest. 2003;123(6):2115–23.

    CAS  PubMed  Google Scholar 

  17. Rudnicka J, Kowalkowski T, Ligor T, Buszewski B. Determination of volatile organic compounds as biomarkers of lung cancer by SPME-GC-TOF/MS and chemometrics. J Chromatogr B. 2011;879(30):3360–6.

    CAS  Google Scholar 

  18. Frerk C, Mitchell VS, McNarry AF, Mendonca C, Bhagrath R, Patel A, O’Sullivan EP, Woodall NM, Ahmad I, Difficult Airway S, Intubation Guidelines Working G. Difficult Airway Society 2015 guidelines for management of unanticipated difficult intubation in adults. Brit J Anaesth. 2015;115(6):827–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shen CY, Li JQ, Han HY, Wang HM, Jiang HH, Chu YN. Triacetone triperoxide detection using low reduced-field proton transfer reaction mass spectrometer. Int J Mass Spectrom. 2009;285(1–2):100–3.

    CAS  Google Scholar 

  20. Zhan XF, Duan JN, Duan YX. Recent developments of proton-transfer reaction mass spectrometry (PTR-MS) and its applications in medical research. Mass Spectrom Rev. 2013;32(2):143–65.

    CAS  PubMed  Google Scholar 

  21. Smith D, Spanel P, Herbig J, Beauchamp J. Mass spectrometry for real-time quantitative breath analysis. J Breath Res. 2014;8(2): 027101.

    CAS  PubMed  Google Scholar 

  22. Lourenco C, Turner C. Breath analysis in disease diagnosis: methodological considerations and applications. Metabolites. 2014;4(2):465–98.

    PubMed  PubMed Central  Google Scholar 

  23. Wang ZN, Wang CJ. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. J Breath Res. 2013;7(3): 037109.

    CAS  PubMed  Google Scholar 

  24. Dabek A, Wojtala M, Pirola L, Balcerczyk A. Modulation of cellular biochemistry, epigenetics and metabolomics by ketone bodies. Implications of the Ketogenic Diet in the Physiology of the Organism and Pathological States. Nutrients. 2020;12(3):788.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ruzsanyi V, Kalapos MP. Breath acetone as a potential marker in clinical practice. J Breath Res. 2017;11(2): 024002.

    PubMed  Google Scholar 

  26. Zou X, Wang HM, Ge DL, Lu Y, Xia L, Huang CQ, Shen CY, Chu YN. On-line monitoring human breath acetone during exercise and diet by proton transfer reaction mass spectrometry. Bioanalysis. 2019;11(1):33–40.

    PubMed  Google Scholar 

  27. Wang CJ, Mbi A, Shepherd M. A study on breath acetone in diabetic patients using a cavity ringdown breath analyzer: exploring correlations of breath acetone with blood glucose and glycohemoglobin A1C. IEEE Sens J. 2010;10(1):54–63.

    Google Scholar 

  28. Spanel P, Dryahina K, Smith D. The concentration distributions of some metabolites in the exhaled breath of young adults. J Breath Res. 2007;1(2):026001.

    PubMed  Google Scholar 

  29. Schmidt M, Jogi I, Holub M, Brandenburg R. Non-thermal plasma based decomposition of volatile organic compounds in industrial exhaust gases. Int J Environ Sci Te. 2015;12(12):3745–54.

    CAS  Google Scholar 

  30. Kistler M, Muntean A, Hollriegl V, Matuschek G, Zimmermann R, Hoeschen C, de Angelis MH, Rozman J. A systemic view on the distribution of diet-derived methanol and hepatic acetone in mice. J Breath Res. 2018;12(1): 017102.

    Google Scholar 

  31. Kistler M, Muntean A, Szymczak W, Rink N, Fuchs H, Gailus-Durner V, Wurst W, Hoeschen C, Klingenspor M, de Angelis MH, Rozman J. Diet-induced and mono-genetic obesity alter volatile organic compound signature in mice. J Breath Res. 2016;10(1): 016009.

    PubMed  Google Scholar 

  32. Lee HJ, Pahl MV, Vaziri ND, Blake DR. Effect of hemodialysis and diet on the exhaled breath methanol concentration in patients with ESRD. J Renal Nutr. 2012;22(3):357–64.

    CAS  Google Scholar 

  33. Cerqueira N, Oliveira EF, Gesto DS, Santos-Martins D, Moreira C, Moorthy HN, Ramos MJ, Fernandes PA. Cholesterol biosynthesis: a mechanistic overview. Biochemistry. 2016;55(39):5483–506.

    CAS  PubMed  Google Scholar 

  34. Turner C, Spanel P, Smith D. A longitudinal study of breath isoprene in healthy volunteers using selected ion flow tube mass spectrometry (SIFT-MS). Physiol Meas. 2006;27(1):13–22.

    PubMed  Google Scholar 

  35. Lirk P, Bodrogi F, Deibl M, Kahler CM, Colvin J, Moser B, Pinggera G, Raifer H, Rieder J, Schobersberger W. Quantification of recent smoking behaviour using proton transfer reaction-mass spectrometry (PTR-MS). Wien Klin Wochenschr. 2004;116(1–2):21–5.

    CAS  PubMed  Google Scholar 

  36. Storer M, Curry K, Squire M, Kingham S, Epton M. Breath testing and personal exposure-SIFT-MS detection of breath acetonitrile for exposure monitoring. J Breath Res. 2015;9(3): 036006.

    PubMed  Google Scholar 

  37. Abbott SM, Elder JB, Spanel P, Smith D. Quantification of acetonitrile in exhaled breath and urinary headspace using selected ion flow tube mass spectrometry. Int J Mass Spectrom. 2003;228(2–3):655–65.

    CAS  Google Scholar 

  38. Fenske JD, Paulson SE. Human breath emissions of VOCs. J Air Waste Manage. 1999;49(5):594–8.

    CAS  Google Scholar 

  39. Wang TS, Pysanenko A, Dryahina K, Spanel P, Smith D. Analysis of breath, exhaled via the mouth and nose, and the air in the oral cavity. J Breath Res. 2008;2(3): 037013.

    PubMed  Google Scholar 

  40. Spanel P, Turner C, Wang TS, Bloor R, Smith D. Generation of volatile compounds on mouth exposure to urea and sucrose: implications for exhaled breath analysis. Physiol Meas. 2016;27(2):N7-17.

    Google Scholar 

  41. Li BZ, Zou X, Wang HM, Lu Y, Shen CY, Chu YN. Standardization study of expiratory conditions for on-line breath testing by proton transfer reaction mass spectrometry. Anal Biochem. 2019;581: 113344.

    CAS  PubMed  Google Scholar 

  42. Amal H, Leja M, Funka K, Lasina I, Skapars R, Sivins A, Ancans G, Kikuste I, Vanags A, Tolmanis I, Kirsners A, Kupcinskas L, Haick H. Breath testing as potential colorectal cancer screening tool. Int J Cancer. 2016;138(1):229–36.

    CAS  PubMed  Google Scholar 

  43. Rudnicka J, Walczak M, Kowalkowski T, Jezierski T, Buszewski B. Determination of volatile organic compounds as potential markers of lung cancer by gas chromatography-mass spectrometry versus trained dogs. Sensor Actuat B-Chem. 2014;202:615–21.

    CAS  Google Scholar 

  44. Awano S, Koshimune S, Kurihara E, Gohara K, Sakai A, Soh I, Hamasaki T, Ansai T, Takehara T. The assessment of methyl mercaptan, an important clinical marker for the diagnosis of oral malodor. J Dent. 2004;32(7):555–9.

    CAS  PubMed  Google Scholar 

  45. Costello BD, Amann A, Al-Kateb H, Flynn C, Filipiak W, Khalid T, Osborne D, Ratcliffe NM. A review of the volatiles from the healthy human body. J Breath Res. 2014;8(1): 014001.

    CAS  Google Scholar 

  46. Saito Y, Sato T, Nomoto K, Tsuji H. Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS Microbiol Ecol. 2018;94(9):fiy125.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ge DL, Zhou JJ, Chu YJ, Lu Y, Zou X, Xia L, Liu YW, Huang CQ, Shen CY, Zhang LW, Wang HZ, Chu YN. Distinguish oral-source VOCs and control their potential impact on breath biomarkers. Anal Bioanal Chem. 2022;414(6):2275–84.

    CAS  PubMed  Google Scholar 

  48. Sun MX, Chen ZY, Gong ZY, Zhao XM, Jiang CY, Yuan Y, Wang ZN, Li YX, Wang CJ. Determination of breath acetone in 149 Type 2 diabetic patients using a ringdown breath-acetone analyzer. Anal Bioanal Chem. 2015;407(6):1641–50.

    CAS  PubMed  Google Scholar 

  49. Barker M, Hengst M, Schmid J, Buers HJ, Mittermaier B, Klemp D, Koppman R. Volatile organic compounds in the exhaled breath of young patients with cystic fibrosis. Eur Respir J. 2006;27(5):929–36.

    CAS  PubMed  Google Scholar 

  50. Kurada S, Grove D, Alkhouri N, Lopez R, Brzezinski A, Baker M, Fiocchi C, Dweik R, Rieder F. A specific breath metabolome signature identifies patients with inflammatory bowel diseases. Am J Gastroenterol. 2015;110:S783.

    Google Scholar 

  51. Trefz P, Obermeier J, Lehbrink R, Schubert JK, Miekisch W, Fischer DC. Exhaled volatile substances in children suffering from type 1 diabetes mellitus: results from a cross-sectional study. Sci Rep. 2019;9:15707.

    PubMed  PubMed Central  Google Scholar 

  52. Hanouneh IA, Zein NN, Cikach F, Dababneh L, Grove D, Alkhouri N, Lopez R, DweikO RA. The breathprints in patients with liver disease identify novel breath biomarkers in alcoholic hepatitis. Clin Gastroenterol H. 2014;12(3):516–23.

    CAS  Google Scholar 

  53. Obermeier J, Trefz P, Happ J, Schubert JK, Staude H, Fischer DC, Miekisch W. Exhaled volatile substances mirror clinical conditions in pediatric chronic kidney disease. PLoS ONE. 2017;12(6): e0178745.

    PubMed  PubMed Central  Google Scholar 

  54. Gulsahi A, Evirgen S, Oztas B, Genc Y, Cetinel Y. Volatile sulphur compound levels and related factors in patients with chronic renal failure. J Clin Periodontol. 2014;41(8):814–9.

    CAS  PubMed  Google Scholar 

  55. Kumar S, Huang JZ, Abbassi-Ghadi N, Spanel P, Smith D, Hanna GB. Selected ion flow tube mass spectrometry analysis of exhaled breath for volatile organic compound profiling of esophago-gastric cancer. Anal Chem. 2013;85(12):6121–8.

    CAS  PubMed  Google Scholar 

  56. Kumar S, Huang JZ, Abbassi-Ghadi N, Mackenzie HA, Veselkov KA, Hoare JM, Lovat LB, Spanel P, Smith D, Hanna GB. Mass spectrometric analysis of exhaled breath for the identification of volatile organic compound biomarkers in esophageal and gastric adenocarcinoma. Ann Surg. 2015;262(6):981–90.

    PubMed  Google Scholar 

  57. Hong Y, Che XX, Su HB, Mai ZB, Huang ZX, Huang WB, Chen W, Liu SL, Gao W, Zhou Z, Tan GB, Li X. Exhaled breath analysis using on-line preconcentration mass spectrometry for gastric cancer diagnosis. J Mass Spectrom. 2021;56(4): e4588.

    CAS  PubMed  Google Scholar 

  58. Zou YC, Zhang X, Chen X, Hu YJ, Ying KJ, Wang P. Optimization of volatile markers of lung cancer to exclude interferences of non-malignant disease. Cancer Biomark. 2014;14(5):371–9.

    CAS  PubMed  Google Scholar 

  59. Monedeiro F, Monedeiro-Milanowski M, Ratiu IA, Brozek B, Ligor T, Buszewski B. Needle trap device-GC-MS for characterization of lung diseases based on breath VOC profiles. Molecules. 2021;26(6):1789.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lamote K, Brinkman P, Vandermeersch L, Vynck M, Sterk PJ, Van Langenhove H, Thas O, Van Cleemput J, Nackaerts K, van Meerbeeck JP. Breath analysis by gas chromatography-mass spectrometry and electronic nose to screen for pleural mesothelioma: a cross-sectional case-control study. Oncotarget. 2017;8(53):91593–602.

    PubMed  PubMed Central  Google Scholar 

  61. Guo L, Wang CS, Chi CJ, Wang XY, Liu SS, Zhao W, Ke CF, Xu GW, Li EY. Exhaled breath volatile biomarker analysis for thyroid cancer. Transl Res. 2015;166(2):188–95.

    CAS  PubMed  Google Scholar 

  62. Zhang Y, Guo L, Qiu ZZ, Lv Y, Chen GM, Li EY. Early diagnosis of breast cancer from exhaled breath by gas chromatography-mass spectrometry (GC/MS) analysis: a prospective cohort study. J Clin Lab Anal. 2020;34(12): e23526.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (22076190, 21876176, 62171433, 21705152), the Youth Innovation Promotion Association, CAS, China (2019432), the Joint Fund between the Second Affiliated Hospital of Anhui Medical University and the Center of Medical Physics and Technology of Hefei Institute of Physical Sciences of Chinese Academy of Sciences (LHJJ2020006), and the HFIPS Director’s Fund (BJPY2021B08, YZJJ2022QN45, YZJJZX202009), and the Anhui Provincial Key R&D Program (202104d07020003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Zou, Min Yang or Chengyin Shen.

Ethics declarations

Ethics approval

This breath test project passed the check by the Ethics Committee of the Second Affiliated Hospital of Anhui Medical University (approval number: YX 2020–003). All the exhalation sampling and breath tests were carried out with the informed consent of the subjects or their accompanying family members.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 419 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Zhang, J., Ding, H. et al. Analysis of volatile organic compounds from deep airway in the lung through intubation sampling. Anal Bioanal Chem 414, 7647–7658 (2022). https://doi.org/10.1007/s00216-022-04295-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04295-x

Keywords

Navigation