Skip to main content

Volatile Organic Compounds as Exhaled Biomarkers of Inflammation and Oxidative Stress in Respiratory Diseases

  • Chapter
  • First Online:
Studies on Respiratory Disorders

Abstract

In ancient times, physicians already valued human breath as a window of diseased and healthy organs. For instance, advanced liver disease was indicated by the fishy smell of a patient’s breath. Hundreds of volatile organic compounds (VOCs) are produced in different organs and are transported by blood to the lungs where they are released. Inflammatory and deviant metabolic processes change the composition of the VOCs and therefore they can be used for clinical diagnosis and disease monitoring. The total amount of VOCs (volatome) in exhaled breath can be detected based on gas chromatography–mass spectrometry-based methods and combined with chemometric analysis in selecting those compounds containing the relevant information about the disease state. The profiles of excreted VOCs from healthy and diseased persons are numerically very complex and the biological and environmental variations are usually very large. The challenge is to extract the relevant information from the large amount of data and to relate subsets or profiles of VOCs to the disease with predictive and diagnostic power.

In this overview, applications are focussed on using VOCs analysis in monitoring inflammatory conditions concerning the pulmonary tract. Available methodologies regarding sampling, sample analysis, and data processing as well as their advantages and potential drawbacks are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma W, Liu X, Pawliszyn J (2006) Analysis of human breath with micro extraction techniques and continuous monitoring of carbon dioxide concentration. Anal Bioanal Chem 385:1398–1408

    PubMed  CAS  Google Scholar 

  2. Libardoni M, Stevens PT, Waite JH, Sacks R (2006) Analysis of human breath samples with a multi-bed sorption trap and comprehensive two-dimensional gas chromatography (GC×GC). J Chromatogr B Analyt Technol Biomed Life Sci 842:13–21

    PubMed  CAS  Google Scholar 

  3. Boots AW, Van Berkel JJ, Dallinga JW, Smolinska A, Wouters EF, Van Schooten FJ (2012) The versatile use of exhaled volatile organic compounds in human health and disease. J Breath Res 6:027108

    PubMed  Google Scholar 

  4. Dallinga JW, Robroeks CM, Van Berkel JJ, Moonen EJ, Godschalk RW, Jobsis Q, Dompeling E, Wouters EF, Van Schooten FJ (2010) Volatile organic compounds in exhaled breath as a diagnostic tool for asthma in children. Clin Exp Allergy 40:68–76

    PubMed  CAS  Google Scholar 

  5. Robroeks CM, Van Berkel JJ, Dallinga JW, Jobsis Q, Zimmermann LJ, Hendriks HJ, Wouters MF, Van der Grinten CP, Van de Kant KD, Van Schooten FJ, Dompeling E (2010) Metabolomics of volatile organic compounds in cystic fibrosis patients and controls. Pediatr Res 68:75–80

    PubMed  CAS  Google Scholar 

  6. Van Berkel JJ, Dallinga JW, Moller GM, Godschalk RW, Moonen EJ, Wouters EF, Van Schooten FJ (2010) A profile of volatile organic compounds in breath discriminates COPD patients from controls. Respir Med 104:557–563

    PubMed  Google Scholar 

  7. Basanta M, Jarvis RM, Xu Y, Blackburn G, Tal-Singer R, Woodcock A, Singh D, Goodacre R, Thomas CL, Fowler SJ (2010) Non-invasive metabolomic analysis of breath using differential mobility spectrometry in patients with chronic obstructive pulmonary disease and healthy smokers. Analyst 135:315–320

    PubMed  CAS  Google Scholar 

  8. Miekisch W, Schubert JK, Noeldge-Schomburg GF (2004) Diagnostic potential of breath analysis-focus on volatile organic compounds. Clin Chim Acta 347:25–39

    PubMed  CAS  Google Scholar 

  9. Montuschi P, Santonico M, Mondino C, Pennazza G, Mantini G, Martinelli E, Capuano R, Ciabattoni G, Paolesse R, Di Natale C, Barnes PJ, D’Amico A (2010) Diagnostic performance of an electronic nose, fractional exhaled nitric oxide, and lung function testing in asthma. Chest 137:790–796

    PubMed  CAS  Google Scholar 

  10. Phillips M, Cataneo RN, Condos R, Ring Erickson GA, Greenberg J, La Bombardi V, Munawar MI, Tietje O (2007) Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis (Edinb) 87:44–52

    CAS  Google Scholar 

  11. Modak AS (2011) Barriers to overcome for transition of breath tests from research to routine clinical practice. J Breath Res 5:030202

    PubMed  Google Scholar 

  12. Smith T (2011) Breath analysis: clinical research to the end-user market. J Breath Res 5:032001

    PubMed  CAS  Google Scholar 

  13. Patterson SG, Bayer CW, Hendry RJ, Sellers N, Lee KS, Vidakovic B, Mizaikoff B, Gabram-Mendola SG (2011) Breath analysis by mass spectrometry: a new tool for breast cancer detection? Am Surg 77:747–751

    PubMed  Google Scholar 

  14. Phillips M, Cataneo RN, Ditkoff BA, Fisher P, Greenberg J, Gunawardena R, Kwon CS, Tietje O, Wong C (2006) Prediction of breast cancer using volatile biomarkers in the breath. Breast Cancer Res Treat 99:19–21

    PubMed  CAS  Google Scholar 

  15. Qin T, Liu H, Song Q, Song G, Wang HZ, Pan YY, Xiong FX, Gu KS, Sun GP, Chen ZD (2010) The screening of volatile markers for hepatocellular carcinoma. Cancer Epidemiol Biomarkers Prev 19:2247–2253

    PubMed  CAS  Google Scholar 

  16. Magder S (2006) Reactive oxygen species: toxic molecules or spark of life? Crit Care 10:208

    PubMed Central  PubMed  Google Scholar 

  17. Rothkrantz-Kos S, Drent M, Vuil H, De Boer M, Bast A, Wouters EF, Roos D, Van Dieijen-Visser MP (2002) Decreased redox state in red blood cells from patients with sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 19:114–120

    PubMed  Google Scholar 

  18. Demedts M, Behr J, Buhl R, Costabel U, Dekhuijzen R, Jansen HM, MacNee W, Thomeer M, Wallaert B, Laurent F, Nicholson AG, Verbeken EK, Verschakelen J, Flower CD, Capron F, Petruzzelli S, De Vuyst P, Van den Bosch JM, Rodriguez-Becerra E, Corvasce G, Lankhorst I, Sardina M, Montanari M (2005) High-dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med 353:2229–2242

    PubMed  CAS  Google Scholar 

  19. Boots AW, Haenen GR, Bast A (2003) Oxidant metabolism in chronic obstructive pulmonary disease. Eur Respir J Suppl 46:14s–27s

    PubMed  CAS  Google Scholar 

  20. Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337

    PubMed  CAS  Google Scholar 

  21. Dillard CJ, Tappel AL (1989) Lipid peroxidation products in biological tissues. Free Radic Biol Med 7:193–196

    PubMed  CAS  Google Scholar 

  22. Orhan H (2007) Analyses of representative biomarkers of exposure and effect by chromatographic, mass spectrometric, and nuclear magnetic resonance techniques: method development and application in life sciences. J Sep Sci 30:149–174

    PubMed  CAS  Google Scholar 

  23. Kanoh S, Kobayashi H, Motoyoshi K (2005) Exhaled ethane: an in vivo biomarker of lipid peroxidation in interstitial lung diseases. Chest 128:2387–2392

    PubMed  CAS  Google Scholar 

  24. Paredi P, Kharitonov SA, Leak D, Shah PL, Cramer D, Hodson ME, Barnes PJ (2000) Exhaled ethane is elevated in cystic fibrosis and correlates with carbon monoxide levels and airway obstruction. Am J Respir Crit Care Med 161:1247–1251

    PubMed  CAS  Google Scholar 

  25. Parkin J, Cohen B (2001) An overview of the immune system. Lancet 357:1777–1789

    PubMed  CAS  Google Scholar 

  26. Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    PubMed  CAS  Google Scholar 

  27. Thorn RM, Reynolds DM, Greenman J (2011) Multivariate analysis of bacterial volatile compound profiles for discrimination between selected species and strains in vitro. J Microbiol Methods 84:258–264

    PubMed  CAS  Google Scholar 

  28. Allardyce RA, Hill AL, Murdoch DR (2006) The rapid evaluation of bacterial growth and antibiotic susceptibility in blood cultures by selected ion flow tube mass spectrometry. Diagn Microbiol Infect Dis 55:255–261

    PubMed  CAS  Google Scholar 

  29. Scotter JM, Allardyce RA, Langford VS, Hill A, Murdoch DR (2006) The rapid evaluation of bacterial growth in blood cultures by selected ion flow tube-mass spectrometry (SIFT-MS) and comparison with the BacT/ALERT automated blood culture system. J Microbiol Methods 65:628–631

    PubMed  CAS  Google Scholar 

  30. Schubert JK, Miekisch W, Geiger K, Noldge-Schomburg GF (2004) Breath analysis in critically ill patients: potential and limitations. Expert Rev Mol Diagn 4:619–629

    PubMed  CAS  Google Scholar 

  31. Buszewski B, Kesy M, Ligor T, Amann A (2007) Human exhaled air analytics: biomarkers of diseases. Biomed Chromatogr 21:553–566

    PubMed  CAS  Google Scholar 

  32. Shevade AV, Ryan MA, Homer ML, Manfreda AM, Zhou H, Manatt KS (2003) Molecular modeling of polymer composite-analyte interactions in electronic nose sensors. Sens Actuators B Chem 93:84–91

    PubMed  CAS  Google Scholar 

  33. Shen G (2008) Fabrication and characterization of metal oxide nanowire sensors. Recent Pat Nanotechnol 2:160–168

    PubMed  CAS  Google Scholar 

  34. Di Natale C, Macagnano A, Martinelli E, Paolesse R, D’Arcangelo G, Roscioni C, Finazzi-Agro A, D’Amico A (2003) Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens Bioelectron 18:1209–1218

    PubMed  Google Scholar 

  35. Dragonieri S, Schot R, Mertens BJ, Le Cessie S, Gauw SA, Spanevello A, Resta O, Willard NP, Vink TJ, Rabe KF, Bel EH, Sterk PJ (2009) An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol 120:856–862

    Google Scholar 

  36. Ehmann R, Boedeker E, Friedrich U, Sagert J, Dippon J, Friedel G, Walles T (2011) Canine scent detection in the diagnosis of lung cancer: revisiting a puzzling phenomenon. Eur Respir J 39:669–676

    PubMed  Google Scholar 

  37. Machado RF, Laskowski D, Deffenderfer O, Burch T, Zheng S, Mazzone PJ, Mekhail T, Jennings C, Stoller JK, Pyle J, Duncan J, Dweik RA, Erzurum SC (2005) Detection of lung cancer by sensor array analyses of exhaled breath. Am J Respir Crit Care Med 171:1286–1291

    PubMed Central  PubMed  Google Scholar 

  38. Fens N, Zwinderman AH, van der Schee MP, de Nijs SB, Dijkers E, Roldaan AC, Cheung D, Bel EH, Sterk PJ (2009) Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am J Respir Crit Care Med 180:1076–1082

    PubMed  CAS  Google Scholar 

  39. Taucher J, Hansel A, Jordan A, Fall R, Futrell JH, Lindinger W (1997) Detection of isoprene in expired air from human subjects using proton-transfer-reaction mass spectrometry. Rapid Commun Mass Spectrom 11:1230–1234

    PubMed  CAS  Google Scholar 

  40. Amann A, Tratnig R, Unterkofler K (2007) Detecting ventricular fibrillation by time-delay methods. IEEE Trans Biomed Eng 54:174–177

    PubMed  Google Scholar 

  41. Blake RS, Whyte C, Hughes CO, Ellis AM, Monks PS (2004) Demonstration of proton-transfer reaction time-of-flight mass spectrometry for real-time analysis of trace volatile organic compounds. Anal Chem 76:3841–3845

    PubMed  CAS  Google Scholar 

  42. Schwoebel H, Schubert R, Sklorz M, Kischkel S, Zimmermann R, Schubert JK, Miekisch W (2011) Phase-resolved real-time breath analysis during exercise by means of smart processing of PTR-MS data. Anal Bioanal Chem 401:2079–2091

    PubMed  CAS  Google Scholar 

  43. Hewitt CN, Hayward S, Tani A (2003) The application of proton transfer reaction-mass spectrometry (PTR-MS) to the monitoring and analysis of volatile organic compounds in the atmosphere. J Environ Monit 5:1–7

    PubMed  CAS  Google Scholar 

  44. Wilson HK, Monster AC (1999) New technologies in the use of exhaled breath analysis for biological monitoring. Occup Environ Med 56:753–757

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Spanel P, Smith D (2007) Selected ion flow tube mass spectrometry for on-line trace gas analysis in biology and medicine. Eur J Mass Spectrom 13:77–82

    CAS  Google Scholar 

  46. Watson JT, Sparkman OD (2007) Introduction to mass spectrometry: instrumentation, applications and strategies for data interpretation. Wiley, Chichester

    Google Scholar 

  47. Westhoff M, Litterst P, Freitag L, Urfer W, Bader S, Baumbach JI (2009) Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study. Thorax 64:744–748

    PubMed  CAS  Google Scholar 

  48. Mieth M, Schubert JK, Groger T, Sabel B, Kischkel S, Fuchs P, Hein D, Zimmermann R, Miekisch W (2010) Automated needle trap heart-cut GC/MS and needle trap comprehensive two-dimensional GC/TOF-MS for breath gas analysis in the clinical environment. Anal Chem 82:2541–2551

    PubMed  CAS  Google Scholar 

  49. Wiley WC, McLaren IH (1955) Time-of-Flight Mass Spectrometer with improved resolution. Rev Sci Instrum 26:1150

    CAS  Google Scholar 

  50. Van Berkel JJ, Dallinga JW, Moller GM, Godschalk RW, Moonen E, Wouters EF, Van Schooten FJ (2008) Development of accurate classification method based on the analysis of volatile organic compounds from human exhaled air. J Chromatogr B Analyt Technol Biomed Life Sci 861:101–107

    PubMed  Google Scholar 

  51. Trygg J, Gabrielsson J, Lundstedt T (2009) Background estimation, denoising, and preprocessing. In: Walczak RTB (ed) Comprehensive chemometrics. Elsevier, Amsterdam

    Google Scholar 

  52. Ga F, Ruan GH, Mo JY (2006) Baseline correction by improved iterative polynomial fitting with automatic threshold. Chemometr Intell Lab Syst 82:59–65

    Google Scholar 

  53. Eilers PHC (2003) A perfect smoother. Anal Chem 75:3631–3636

    PubMed  CAS  Google Scholar 

  54. Eilers PHC, Marx BD (1996) Flexible smoothing with B-splines and penalties. Stat Sci 11:89–102

    Google Scholar 

  55. Xu ZF, Sun XB, Harrington PD (2011) Baseline correction method using an orthogonal basis for gas chromatography/mass spectrometry data. Anal Chem 83:7464–7471

    PubMed  CAS  Google Scholar 

  56. Bloemberg TG, Gerretzen J, Wouters HJP, Gloerich J, Van Dael M, Wessels HJCT, Van den Heuvel LP, Eilers PHC, Buydens LMC, Wehrens R (2010) Improved parametric time warping for proteomics. Chemometr Intell Lab Syst 104:65–74

    CAS  Google Scholar 

  57. Nielsen NPV, Carstensen JM, Smedsgaard J (1998) Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. J Chromatogr A 805:17–35

    CAS  Google Scholar 

  58. Peters S, Van Velzen E, Janssen HG (2009) Parameter selection for peak alignment in chromatographic sample profiling: objective quality indicators and use of control samples. Anal Bioanal Chem 394:1273–1281

    PubMed Central  PubMed  CAS  Google Scholar 

  59. Lommen A (2009) MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal Chem 81:3079–3086

    PubMed  CAS  Google Scholar 

  60. Lommen A, Kools HJ (2012) MetAlign 3.0: performance enhancement by efficient use of advances in computer hardware. Metabolomics 8:719–726

    PubMed Central  PubMed  CAS  Google Scholar 

  61. Pluskal T, Castillo S, Villar-Briones A, Oresic M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:395–405

    PubMed Central  PubMed  Google Scholar 

  62. Wegner A, Sapcariu SC, Weindl D, Hiller K (2013) Isotope cluster-based compound matching in gas chromatography/mass spectrometry for non-targeted metabolomics. Anal Chem 85:4030–4037

    PubMed  CAS  Google Scholar 

  63. O’Callaghan S, De Souza DP, Isaac A, Wang Q, Hodkinson L, Olshansky M, Erwin T, Appelbe B, Tull DL, Roessner U, Bacic A, McConville MJ, Likic VA (2012) PyMS: a python toolkit for processing of gas chromatography–mass spectrometry (GC-MS) data. Application and comparative study of selected tools. BMC Bioinformatics 13:115

    PubMed Central  PubMed  Google Scholar 

  64. Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem 78:4281–4290

    PubMed  CAS  Google Scholar 

  65. Torgrip RJO, Aberg KM, Alm E, Schuppe-Koistinen I, Lindberg J (2008) A note on normalization of biofluid 1D H-1-NMR data. Metabolomics 4:114–121

    CAS  Google Scholar 

  66. Spraul M, Neidig P, Klauck U, Kessler P, Holmes E, Nicholson EJK, Sweatman BC, Salman SR, Farrant RD, Rahr E, Beddell CR, Lindon JC (1994) Automatic reduction of NMR spectroscopic data for statistical and pattern-recognition classification of samples. J Pharm Biomed Anal 12:1215–1225

    PubMed  CAS  Google Scholar 

  67. Van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, Van der Werf MJ (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142

    PubMed Central  PubMed  Google Scholar 

  68. Westerhuis JA, Hoefsloot HJC, Smit S, Vis DJ, Smilde AK, Van Velzen EJJ, Van Duijnhoven JPM, Van Dorsten FA (2008) Assessment of PLSDA cross validation. Metabolomics 4:81–89

    CAS  Google Scholar 

  69. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag A Phys Condens Matter Defects Mech Prop 2:559–572

    Google Scholar 

  70. Vandeginste BGM, Massart DL, Buydens LMC, Jong SD, Lewi PJ, Smeyers-Verbeke J (1998) Handbook of chemometrics and qualimerics: part A. Elsevier, Amsterdam

    Google Scholar 

  71. Wold S, Sjostrom M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab Syst 58:109–130

    CAS  Google Scholar 

  72. Krzanowski WJ (2000) Principles of multivariate analysis, revisedth edn. Oxford University Press, New York

    Google Scholar 

  73. Webb A (2002) Statistical pattern recognition. Wiley, New York

    Google Scholar 

  74. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Google Scholar 

  75. Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    Google Scholar 

  76. Vapnik V (1998) Statistical learning theory. Willey, New York

    Google Scholar 

  77. Phillips M, Cataneo RN, Greenberg J, Grodman R, Salazar M (2003) Breath markers of oxidative stress in patients with unstable angina. Heart Dis 5:95–99

    PubMed  CAS  Google Scholar 

  78. Han MK, Agusti A, Calverley PM, Celli BM, Criner G, Curtis JL, Fabbri LM, Goldin JG, Jones PW, MacNee W, Make BJ, Rabe KF, Rennard SI, Sciurba FC, Silverman EK, Vestbo J, Washko GR, Wouters EFM, Martinez FJ (2010) Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir Crit Care Med 182:598–604

    PubMed  Google Scholar 

  79. Shirtcliffe P, Weatherall M, Travers J, Beasley R (2011) The multiple dimensions of airways disease: targeting treatment to clinical phenotypes. Curr Opin Pulm Med 17:72–78

    PubMed  CAS  Google Scholar 

  80. Kolk AHJ, Van Berkel JJBN, Claassens MM, Walters E, Kuijper S, Dallinga JW, Van Schooten FJ (2012) Breath analysis as a potential diagnostic tool for tuberculosis. Int J Tuberc Lung Dis 16:777–782

    PubMed  CAS  Google Scholar 

  81. Horvath G, Chilo J, Lindblad T (2010) Different volatile signals emitted by human ovarian carcinoma and healthy tissue. Future Oncol 6:1043–1049

    PubMed  CAS  Google Scholar 

  82. Phillips M (1992) Detection of carbondisulfide in breath and air: a possible new risk factor for coronary artery disease. Int Arch Occup Environ Health 64:119–123

    PubMed  CAS  Google Scholar 

  83. Timms C, Thomas PS, Yates DH (2000) Detection of gastro-oesophageal reflux (GORD) in patients with obstructive lung disease using exhaled breath profiling. J Breath Res 6:016003

    Google Scholar 

  84. Verdam FJ, Dallinga JW, Driessen A, De Jonge C, Moonen EJC, Van Berkel JBN, Luijk J, Bouvy ND, Buurman WA, Rensen SS, Greve JWM, Van Schooten FJ (2013) Non-alcoholic steatohepatitis: a non-invasive diagnosis by analysis of exhaled breath. J Hepatol 58:543–548

    PubMed  CAS  Google Scholar 

  85. Woolfenden E (2010) Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air: part 2. Sorbent selection and other aspects of optimizing air monitoring methods. J Chromatogr A 1217:2685–2694

    PubMed  CAS  Google Scholar 

  86. Chang EE, Wei-Chi W, Li-Xuan Z, Hung-Lung C (2010) Health risk assessment of exposure to selected volatile organic compounds emitted from an integrated iron and steel plant. Inhal Toxicol 22:117–125

    PubMed  CAS  Google Scholar 

  87. Pleil JD, Amann A (2011) The 2011 International Association of Breath Research (IABR) meeting in Parma, Italy: a collection of comments from attendees. J Breath Res 5:049001

    Google Scholar 

  88. Scholpp J, Schubert JK, Miekisch W, Geiger K (2002) Breath markers and soluble lipid peroxidation markers in critically ill patients. Clin Chem Lab Med 40:587–594

    PubMed  CAS  Google Scholar 

  89. Schubert JK, Muller WP, Benzing A, Geiger K (1998) Application of a new method for analysis of exhaled gas in critically ill patients. Intensive Care Med 24:415–421

    PubMed  CAS  Google Scholar 

  90. Lakatos PL, Papp M, Rieder F (2011) Serologic antiglycan antibodies in inflammatory bowel disease. Am J Gastroenterol 106:406–412

    PubMed  Google Scholar 

  91. Actis GC, Rosina F, Mackay IR (2011) Inflammatory bowel disease: beyond the boundaries of the bowel. Expert Rev Gastroenterol Hepatol 5:401–410

    PubMed  CAS  Google Scholar 

  92. Sedghi S, Keshavarzian A, Klamut M, Eiznhamer D, Zarling EJ (1994) Elevated breath ethane levels in active ulcerative colitis: evidence for excessive lipid peroxidation. Am J Gastroenterol 89:2217–2221

    PubMed  CAS  Google Scholar 

  93. Pelli MA, Trovarelli G, Capodicasa E, De Medio GE, Bassotti G (1999) Breath alkanes determination in ulcerative colitis and Crohn’s disease. Dis Colon Rectum 42:71–76

    PubMed  CAS  Google Scholar 

  94. Anzueto A (2010) Impact of exacerbations on COPD. Eur Respir Rev 19:113–118

    PubMed  CAS  Google Scholar 

  95. Joseph NM, Sistla S, Dutta TK, Badhe AS, Parija SC (2010) Ventilator-associated pneumonia: a review. Eur J Intern Med 21:360–368

    PubMed  Google Scholar 

  96. Emerson J, Rosenfeld M, McNamara S, Ramsey B, Gibson RL (2002) Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 34:91–100

    PubMed  Google Scholar 

  97. Paredi P, Kharitonov SA, Leak D, Ward S, Cramer D, Barnes PJ (2000) Exhaled ethane, a marker of lipid peroxidation, is elevated in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 162:369–373

    PubMed  CAS  Google Scholar 

  98. Phillips M, Basa-Dalay V, Bothamley G, Cataneo RN, Lam PK, Natividad MP, Schmitt P, Wai J (2010) Breath biomarkers of active pulmonary tuberculosis. Tuberculosis 90:145–151

    PubMed  CAS  Google Scholar 

  99. Tanner NT, Mehta H, Silvestri GA (2012) New testing for lung cancer screening. Oncology 26:176–182

    PubMed  Google Scholar 

  100. Marshall HM, Bowman RV, Crossin J, Lau MA, Slaughter RE, Passmore LH, McCaul EM, Courtney DA, Windsor MN, Yang IA, Smith IR, Keir BJ, Hayes TJ, Redmond SJ, Zimmerman PV, Fong KM (2013) Queensland lung cancer screening study: rationale, design and methods. Intern Med J 43:174–182

    PubMed  CAS  Google Scholar 

  101. Dakin C, Henry RL, Field P, Morton J (2001) Defining an exacerbation of pulmonary disease in cystic fibrosis. Pediatr Pulmonol 31:436–442

    PubMed  CAS  Google Scholar 

  102. Kessler R, Stahl E, Vogelmeier C, Haughney J, Trudeau E, Lofdahl CG, Partridge MR (2006) Patient understanding, detection, and experience of COPD exacerbations: an observational, interview-based study. Chest 130:133–142

    PubMed  Google Scholar 

  103. Nicholas B, Djukanovic R (2009) Induced sputum: a window to lung pathology. Biochem Soc Trans 37:868–872

    PubMed  CAS  Google Scholar 

  104. Ramirez P, Valencia M, Torres A (2007) Broncoalveolar lavage to diagnose respiratory infections. Semin Respir Crit Care Med 28:525–533

    PubMed  Google Scholar 

  105. Sykes A, Mallia P, Johnston SL (2007) Diagnosis of pathogens in exacerbations of chronic obstructive pulmonary disease. Proc Am Thorac Soc 4:642–646

    PubMed  Google Scholar 

  106. Block JK, Vandemheen KL, Tullis E, Fergusson D, Doucette S, Haase D, Berthiaume Y, Brown N, Wilcox P, Bye P, Bell S, Noseworthy M, Pedder L, Freitag A, Paterson N, Aaron SD (2006) Predictors of pulmonary exacerbations in patients with cystic fibrosis infected with multi-resistant bacteria. Thorax 61:969–974

    PubMed Central  PubMed  CAS  Google Scholar 

  107. Vestbo J (2006) Clinical assessment, staging, and epidemiology of chronic obstructive pulmonary disease exacerbations. Proc Am Thorac Soc 3:252–256

    PubMed  Google Scholar 

Download references

Conflict of Interest Statement

On behalf of all authors I declare that none of us has any relevant financial interests or conflicts related to this manuscript. (Volatile organic compounds as exhaled biomarkers of inflammation and oxidative stress in respiratory diseases.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. van Schooten Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Schooten, F.J., Boots, A.W., Smolinska, A., Dallinga, J.W. (2014). Volatile Organic Compounds as Exhaled Biomarkers of Inflammation and Oxidative Stress in Respiratory Diseases. In: Ganguly, N., Jindal, S., Biswal, S., Barnes, P., Pawankar, R. (eds) Studies on Respiratory Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0497-6_4

Download citation

Publish with us

Policies and ethics