Skip to main content

Advertisement

Log in

Development of analytical methods to study the salivary metabolome: impact of the sampling

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Advances in metabolomics have allowed the identification and characterization of saliva metabolites that can be used as biomarkers. However, discrepancies can be noted with the content of the same biomarker being increased or decreased for a given disease. Differences in the way saliva is collected, stored, and/or treated could cause these discrepancies. Indeed, there is no standardized method for saliva sampling and analysis. In this work, two chromatographic modes were used, i.e., RP-LC and HILIC both coupled to MS used in positive and negative ionization modes. The analytical conditions were optimized with a mixture of 90 compounds naturally present in saliva, representative of the wide range of molecular mass and polarity of salivary metabolites and being described as having a differential expression in various pathologies. These four methods were applied to the analysis of saliva samples collected by spitting, aspiration, or Salivette® with or without prior rinsing of the mouth. Rinsing had an effect on some metabolite concentrations. As it can induce an additional parameter of variability to the sampling, it seems therefore preferable to use methods without rinsing while effects of these parameters on the metabolites are investigated. Saliva obtained by spitting and aspiration gave statistically equivalent results for 84% of the metabolites studied. Conversely, Salivette® gave different results since the majority of the metabolites chosen for the study were not quantified in the samples. The Salivette® does not seem therefore to be a suitable sampling method for an untargeted analysis of the salivary metabolome, unlike aspiration and spitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Humphrey SP, Williamson RT. A review of saliva: normal composition, flow, and function. J Prosthet Dent. 2001;85:162–9. https://doi.org/10.1067/mpr.2001.113778.

    Article  CAS  PubMed  Google Scholar 

  2. Yoshizawa JM, Schafer CA, Schafer JJ, Farrell JJ, Paster BJ, Wong DTW. Salivary biomarkers: toward future clinical and diagnostic utilities. Clin Microbiol Rev. 2013;26:781–91. https://doi.org/10.1128/CMR.00021-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cuevas-Córdoba B, Santiago-García J. Saliva: a fluid of study for OMICS. Omics J Integr Biol. 2014;18:87–97. https://doi.org/10.1089/omi.2013.0064.

    Article  CAS  Google Scholar 

  4. Roblegg E, Coughran A, Sirjani D. Saliva: an all-rounder of our body. Eur J Pharm Biopharm. 2019;142:133–41. https://doi.org/10.1016/j.ejpb.2019.06.016.

    Article  CAS  PubMed  Google Scholar 

  5. Justino AB, Teixeira RR, Peixoto LG, Jaramillo OLB, Espindola FS. Effect of saliva collection methods and oral hygiene on salivary biomarkers. Scand J Clin Lab Invest. 2017;77:415–22. https://doi.org/10.1080/00365513.2017.1334261.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang A, Sun H, Wang X. Saliva metabolomics opens door to biomarker discovery, disease diagnosis, and treatment. Appl Biochem Biotechnol. 2012;168:1718–27. https://doi.org/10.1007/s12010-012-9891-5.

    Article  CAS  PubMed  Google Scholar 

  7. Khurshid Z, Zohaib S, Najeeb S, Zafar MS, Slowey PD, Almas K. Human saliva collection devices for proteomics: an update. Int J Mol Sci. 2016;17:846. https://doi.org/10.3390/ijms17060846.

    Article  CAS  PubMed Central  Google Scholar 

  8. Soares Nunes LA, Mussavira S, Sukumaran Bindhu O. Clinical and diagnostic utility of saliva as a non-invasive diagnostic fluid: a systematic review. Biochem Medica. 2015;25:177–92. https://doi.org/10.11613/BM.2015.018.

    Article  Google Scholar 

  9. Gardner A, Carpenter G, So P-W. Salivary metabolomics: from diagnostic biomarker discovery to investigating biological function. Metabolites. 2020;10:47. https://doi.org/10.3390/metabo10020047.

    Article  CAS  PubMed Central  Google Scholar 

  10. Kageyama G, Saegusa J, Irino Y, Tanaka S, Tsuda K, Takahashi S, Sendo S, Morinobu A. Metabolomics analysis of saliva from patients with primary Sjögren’s syndrome: salivary metabolomics among Sjögren’s syndrome. Clin Exp Immunol. 2015;182:149–53. https://doi.org/10.1111/cei.12683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mikkonen JJ, Herrala M, Soininen R, Lappalainen R, Tjäderhane L, Seitsalo H, Niemelä R, Salo T, Kullaa AM, Myllymaa S. Metabolic profiling of saliva in patients with primary Sjögren’s syndrome. Metabolomics. 2013;3:7.

    Google Scholar 

  12. Zappacosta B, Persichilli S, De Sole P, Mordente A, Giardina B. Effect of smoking one cigarette on antioxidant metabolites in the saliva of healthy smokers. Arch Oral Biol. 1999;44:485–8. https://doi.org/10.1016/S0003-9969(99)00025-4.

    Article  CAS  PubMed  Google Scholar 

  13. Zappacosta B, Manni A, Persichilli S, Scribano D, Minucci A, Lazzaro D, De Sole P, Giardina B. HPLC analysis of some sulphur compounds in saliva: comparison between healthy subjects and periodontopathic patients. Clin Chim Acta. 2003;338:57–60. https://doi.org/10.1016/j.cccn.2003.07.019.

    Article  CAS  PubMed  Google Scholar 

  14. Kochańska B, Smoleński RT, Knap N. Determination of adenine nucleotides and their metabolites in human saliva. Acta Biochim Pol. 2000;47:877–9.

    Article  Google Scholar 

  15. Rai B, Kharb S, Jain R, Anand SC. Salivary vitamins E and C in oral cancer. Redox Rep Commun Free Radic Res. 2007;12:163–4. https://doi.org/10.1179/135100007X200245.

    Article  CAS  Google Scholar 

  16. Álvarez-Sánchez B, Priego-Capote F, Luque de Castro MD. Study of sample preparation for metabolomic profiling of human saliva by liquid chromatography-time of flight/mass spectrometry. J Chromatogr A. 2012;1248:178–81. https://doi.org/10.1016/j.chroma.2012.05.029.

    Article  CAS  PubMed  Google Scholar 

  17. Dame ZT, Aziat F, Mandal R, Krishnamurthy R, Bouatra S, Borzouie S, Guo AC, Sajed T, Deng L, Lin H, Liu P, Dong E, Wishart DS. The human saliva metabolome. Metabolomics. 2015;11:1864–83. https://doi.org/10.1007/s11306-015-0840-5.

    Article  CAS  Google Scholar 

  18. Figueira J, Gouveia-Figueira S, Öhman C, Lif Holgerson P, Nording ML, Öhman A. Metabolite quantification by NMR and LC-MS/MS reveals differences between unstimulated, stimulated, and pure parotid saliva. J Pharm Biomed Anal. 2017;140:295–300. https://doi.org/10.1016/j.jpba.2017.03.037.

    Article  CAS  PubMed  Google Scholar 

  19. Silva MJ, Reidy JA, Samandar E, Herbert AR, Needham LL, Calafat AM. Detection of phthalate metabolites in human saliva. Arch Toxicol. 2005;79:647–52. https://doi.org/10.1007/s00204-005-0674-4.

    Article  CAS  PubMed  Google Scholar 

  20. Wei J, Xie G, Zhou Z, Shi P, Qiu Y, Zheng X, Chen T, Su M, Zhao A, Jia W. Salivary metabolite signatures of oral cancer and leukoplakia. Int J Cancer. 2011;129:2207–17. https://doi.org/10.1002/ijc.25881.

    Article  CAS  PubMed  Google Scholar 

  21. Xavier Assad D, Acevedo AC, Cançado Porto Mascarenhas E, Costa Normando AG, Pichon V, Chardin H, Neves Silva Guerra E, Combes A. Using an untargeted metabolomics approach to identify salivary metabolites in women with breast cancer. Metabolites. 2020;10:506. https://doi.org/10.3390/metabo10120506.

    Article  CAS  PubMed Central  Google Scholar 

  22. Murata T, Yanagisawa T, Kurihara T, Kaneko M, Ota S, Enomoto A, Tomita M, Sugimoto M, Sunamura M, Hayashida T, Kitagawa Y, Jinno H. Salivary metabolomics with alternative decision tree-based machine learning methods for breast cancer discrimination. Breast Cancer Res Treat. 2019;177:591–601. https://doi.org/10.1007/s10549-019-05330-9.

    Article  PubMed  Google Scholar 

  23. Finlay EMH, Morton MS, Gaskell SJ. Identification and quantification of dehydroepiandrosterone sulphate in saliva. Steroids. 1982;39:63–71. https://doi.org/10.1016/0039-128X(82)90126-X.

    Article  CAS  PubMed  Google Scholar 

  24. Kulkarni B, Wood K, Mattes R. Quantitative and qualitative analyses of human salivary NEFA with gas-chromatography and mass spectrometry. Front Physiol. 2012;3:328. https://doi.org/10.3389/fphys.2012.00328.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gaskell SJ, Pike AW, Griffiths K. Analysis of testosterone and dehydroepiandrosterone in saliva by gas chromatography-mass spectrometry. Steroids. 1980;36:219–28. https://doi.org/10.1016/0039-128X(80)90020-3.

    Article  CAS  PubMed  Google Scholar 

  26. Figueira J, Jonsson P, Nordin Adolfsson A, Adolfsson R, Nyberg L, Öhman A. NMR analysis of the human saliva metabolome distinguishes dementia patients from matched controls. Mol Biosyst. 2016;12:2562–71. https://doi.org/10.1039/c6mb00233a.

    Article  CAS  PubMed  Google Scholar 

  27. Takeda I, Stretch C, Barnaby P, Bhatnager K, Rankin K, Fu H, Weljie A, Jha N, Slupsky C. Understanding the human salivary metabolome. NMR Biomed. 2009;22:577–84. https://doi.org/10.1002/nbm.1369.

    Article  CAS  PubMed  Google Scholar 

  28. Herrala M, Mikkonen JJW, Pesonen P, Lappalainen R, Tjäderhane L, Niemelä RK, Seitsalo H, Salo T, Myllymaa S, Kullaa AM. Variability of salivary metabolite levels in patients with Sjögren’s syndrome. J Oral Sci. 2021;63:22–6. https://doi.org/10.2334/josnusd.19-0504.

    Article  Google Scholar 

  29. Kumari S, Goyal V, Kumaran SS, Dwivedi SN, Srivastava A, Jagannathan NR. Quantitative metabolomics of saliva using proton NMR spectroscopy in patients with Parkinson’s disease and healthy controls. Neurol Sci. 2020;41:1201–10. https://doi.org/10.1007/s10072-019-04143-4.

    Article  PubMed  Google Scholar 

  30. Sugimoto M, Saruta J, Matsuki C, To M, Onuma H, Kaneko M, Soga T, Tomita M, Tsukinoki K. Physiological and environmental parameters associated with mass spectrometry-based salivary metabolomic profiles. Metabolomics. 2013;9:454–63. https://doi.org/10.1007/s11306-012-0464-y.

    Article  CAS  Google Scholar 

  31. Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics Off J Metabolomic Soc. 2010;6:78–95. https://doi.org/10.1007/s11306-009-0178-y.

    Article  CAS  Google Scholar 

  32. Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M. Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013;34:2865–72. https://doi.org/10.1002/elps.201300019.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Q, Gao P, Wang X, Duan Y. Investigation and identification of potential biomarkers in human saliva for the early diagnosis of oral squamous cell carcinoma. Clin Chim Acta. 2014;427:79–85. https://doi.org/10.1016/j.cca.2013.10.004.

    Article  CAS  PubMed  Google Scholar 

  34. Navazesh M. Methods for collecting saliva. Ann N Y Acad Sci. 1993;694:72–7. https://doi.org/10.1111/j.1749-6632.1993.tb18343.x.

    Article  CAS  PubMed  Google Scholar 

  35. Chen Z, Feng S, Pow EHN, Lam OLT, Mai S, Wang H. Organic anion composition of human whole saliva as determined by ion chromatography. Clin Chim Acta Int J Clin Chem. 2015;438:231–5. https://doi.org/10.1016/j.cca.2014.08.027.

    Article  CAS  Google Scholar 

  36. Garde AH, Hansen AM. Long-term stability of salivary cortisol. Scand J Clin Lab Invest. 2005;65:433–6. https://doi.org/10.1080/00365510510025773.

    Article  CAS  PubMed  Google Scholar 

  37. Toda M, Morimoto K. Comparison of saliva sampling methods for measurement of salivary adiponectin levels. Scand J Clin Lab Invest. 2008;68:823–5. https://doi.org/10.1080/00365510802147006.

    Article  CAS  PubMed  Google Scholar 

  38. Kozaki T, Lee S, Nishimura T, Katsuura T, Yasukouchi A. Effects of saliva collection using cotton swabs on melatonin enzyme immunoassay. J Circadian Rhythms. 2011;9:1. https://doi.org/10.1186/1740-3391-9-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Piaton E, Fabre M, Goubin-Versini I, Bretz-Grenier M-F, Courtade-Saïdi M, Vincent S, Belleannée G, Thivolet F, Boutonnat J, Debaque H, Fleury-Feith J, Vielh P, Egelé C, Bellocq J-P, Michiels J-F, Cochand-Priollet B. Guidelines for May-Grünwald–Giemsa staining in haematology and non-gynaecological cytopathology: recommendations of the French Society of Clinical Cytology (SFCC) and of the French Association for Quality Assurance in Anatomic and Cytologic Pathology (AFAQAP). Cytopathology. 2016;27:359–68. https://doi.org/10.1111/cyt.12323.

    Article  CAS  PubMed  Google Scholar 

  40. Vranić L, Granić P, Rajić Z. Basic amino acid in the pathogenesis of caries. Acta Stomatol Croat. 1991;25:71–6.

    PubMed  Google Scholar 

  41. Laine M, Porola P, Udby L, Kjeldsen L, Cowland JB, Borregaard N, Hietanen J, Ståhle M, Pihakari A, Konttinen YT. Low salivary dehydroepiandrosterone and androgen-regulated cysteine-rich secretory protein 3 levels in Sjögren’s syndrome. Arthritis Rheum. 2007;56:2575–84. https://doi.org/10.1002/art.22828.

    Article  CAS  PubMed  Google Scholar 

  42. Tanaka S, Machino M, Akita S, Yokote Y, Sakagami H. Changes in salivary amino acid composition during aging. In Vivo. 2010;24:853–6.

    CAS  PubMed  Google Scholar 

  43. Park Y-D, Jang J-H, Oh Y-J, Kwon H-J. Analyses of organic acids and inorganic anions and their relationship in human saliva before and after glucose intake. Arch Oral Biol. 2014;59:1–11. https://doi.org/10.1016/j.archoralbio.2013.10.006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Marion Florimond (URP 2496, UFR Odontologie, Université Paris Cité) and Dominique Hotton (UMRS 1138, INSERM Centre des Cordeliers) for their advice in sample staining and light microscopy.

Funding

This work was supported by the “Plateforme d’expertise pour le suivi de toxines à l’état de traces en milieu reel” project from DIM analytics from the Ile de France region.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: V. Pichon, A. Combes, H. Chardin. Formal analysis and investigation: P. Bosman, A. Combes. Writing—original draft preparation: P. Bosman. Writing—review and editing: V. Pichon, A. Combes, H. Chardin, A. C. Acevedo. Funding acquisition: V. Pichon. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Audrey Combes.

Ethics declarations

Consent to participate 

This study on human saliva samples have been performed in accordance with the ethical standards of the French General Health Directorate. And the participant gave informed consent for participation.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 248 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosman, P., Pichon, V., Acevedo, A.C. et al. Development of analytical methods to study the salivary metabolome: impact of the sampling. Anal Bioanal Chem 414, 6899–6909 (2022). https://doi.org/10.1007/s00216-022-04255-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04255-5

Keywords

Navigation