Skip to main content
Log in

Signal-on fluorescent sensing strategy for Pb2+ detection based on 8–17 DNAzyme-mediated molecular beacon-type catalytic hairpin assembly circuit

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Based on a Pb2+-specific 8–17 DNAzyme-induced catalytic hairpin assembly (CHA), a simple signal-on fluorescence strategy for lead ion detection was established. 8–17 DNAzyme was used as the recognition element of Pb2+, which catalyzed the cleavage of the RNA base embedded in the DNA substrate strand, while releasing part of the substrate strand (S’) as CHA initiator. And two hairpin probes (H1 and H2-FQ) were designed according to the sequence of S’ for CHA, in which H2-FQ was labeled with the fluorophore FAM and quencher BHQ-1 as fluorescent “molecular switch” based on fluorescence resonance energy transfer (FRET). In the presence of Pb2+, the CHA reaction was triggered to form a large number of H1-H2 complexes, enabling enzyme-free isothermal amplification and a signal-on fluorescence strategy. In the concentration range of 0.5–1000 nM, the fluorescence signal increases with the increase of Pb2+ concentration. The quantitative detection limit of Pb2+ by this method is 0.5 nM, which has better detection performance compared with the FQ-labeled 8–17 DNAzyme method. The established biosensor exhibits good specificity and can be effectively used for the detection of Pb2+ in real samples of river water and grass carp. Through ingenious nucleic acid sequence design, DNAzyme and CHA reactions are integrated to realize the enzyme-free isothermal amplifications and sensitive detection of Pb2+, which holds potential versatility in food supervision and environmental monitoring.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yang DX, Liu XC, Zhou YY, Lou L, Zhang JC, Huang AQ, Mao QM, Chen X, Tang L. Aptamer-based biosensors for detection of lead(II) ion: a review. Anal Methods. 2017;9(13):1976–90. https://doi.org/10.1039/c7ay00477j.

    Article  CAS  Google Scholar 

  2. Bi XY, Li ZG, Wang SX, Zhang L, Xu R, Liu JL, Yang HM, Guo MZ. Lead isotopic compositions of selected coals, Pb/Zn ores and fuels in China and the application for source tracing. Environ Sci Technol. 2017;51(22):13502–8. https://doi.org/10.1021/acs.est.7b04119.

    Article  CAS  PubMed  Google Scholar 

  3. Huang KW, Yu CJ, Tseng WL. Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion. Biosens Bioelectron. 2010;25(5):984–9. https://doi.org/10.1016/j.bios.2009.09.006.

    Article  CAS  PubMed  Google Scholar 

  4. Chen YY, Chang HT, Shiang YC, Hung YL, Chiang CK, Huang CC. Colorimetric assay for lead ions based on the leaching of gold nanoparticles. Anal Chem. 2009;81(22):9433v9439. https://doi.org/10.1021/ac9018268.

    Article  CAS  Google Scholar 

  5. Steenland K, Boffetta P. Lead and cancer in humans: where are we now? Am J Ind Med. 2000;38(3):295–9. https://doi.org/10.1002/1097-0274(200009)38:3%3c295::AID-AJIM8%3e3.0.CO;2-L.

    Article  CAS  PubMed  Google Scholar 

  6. Wagner EP, Smith BW, Winefordner JD. Ultratrace determination of lead in whole blood using electrothermal atomization laser-excited atomic fluorescence spectrometry. Anal Chem. 1996;68(18):3199–203. https://doi.org/10.1021/ac9603587.

    Article  CAS  PubMed  Google Scholar 

  7. Weidenhamer JD. Circuit board analysis for lead by atomic absorption spectroscopy in a course for nonscience majors. J Chem Educ. 2007;84(7):1165–6. https://doi.org/10.1021/ed084p1165.

    Article  CAS  Google Scholar 

  8. Qiu JY, Li ZH, Miao LJ, Wang HS, Zhang YN, Wu SS, Zhang YJ, Li X, Wu AG. Colorimetric detection of Ba2+, Cd2+ and Pb2+ based on a multifunctionalized Au NP sensor. Analyst. 2019;144(17):5081–9. https://doi.org/10.1039/c9an00836e.

    Article  CAS  PubMed  Google Scholar 

  9. Wang D, Ge CC, Lv KP, Zou QS, Liu Q, Liu LP, Yang QH, Bao SY. A simple lateral flow biosensor for rapid detection of lead(II) ions based on G-quadruplex structure-switching. Chem Commun. 2018;54(97):13718–21. https://doi.org/10.1039/c8cc06810k.

    Article  CAS  Google Scholar 

  10. Lei YM, Huang WX, Zhao M, Chai YQ, Yuan R, Zhuo Y. Electrochemiluminescence resonance energy transfer system: mechanism and application in ratiometric aptasensor for lead ion. Anal Chem. 2015;87(15):7787–94. https://doi.org/10.1021/acs.analchem.5b01445.

    Article  CAS  PubMed  Google Scholar 

  11. Li PC, Jiang SJ. Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Cd and Pb in plastics. Anal Bioanal Chem. 2006;385(6):1092–7. https://doi.org/10.1007/s00216-006-0547-6.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou YY, Tang L, Zeng GM, Zhang C, Xie X, Liu YY, Wang JJ, Tang J, Zhang Y, Deng YC. Label free detection of lead using impedimetric sensor based on ordered mesoporous carbon-gold nanoparticles and DNAzyme catalytic beacons. Talanta. 2016;146:641–7. https://doi.org/10.1016/j.talanta.2015.06.063.

    Article  CAS  PubMed  Google Scholar 

  13. Liang G, Man Y, Li A, Jin XX, Liu XH, Pan LG. DNAzyme-based biosensor for detection of lead ion: a review. Microchem J. 2017;131:145–53. https://doi.org/10.1016/j.microc.2016.12.010.

    Article  CAS  Google Scholar 

  14. Breaker RR. DNA enzymes. Nat Biotechnol. 1997;15:427–31. https://doi.org/10.1038/nbt0597-427.

    Article  CAS  PubMed  Google Scholar 

  15. Breaker RR. DNA aptamers and DNA enzymes. Curr Opin Chem Biol. 1997;1(1):26–31. https://doi.org/10.1016/S1367-5931(97)80105-6.

    Article  CAS  PubMed  Google Scholar 

  16. Khan S, Burciu B, Filipe CD, Li YF, Dellinger K, Didar TF. DNAzyme-based biosensors: immobilization strategies, applications, and future prospective. ACS Nano. 2021;15(9):13943–69. https://doi.org/10.1021/acsnano.1c04327.

    Article  CAS  PubMed  Google Scholar 

  17. Huang ZM, Wang X, Wu Z, Jian JH. Recent advances on DNAzyme-based sensing. Chem Asian J. 2022;17(6):e202101414. https://doi.org/10.1002/asia.202101414.

    Article  CAS  PubMed  Google Scholar 

  18. Carmi N, Balkhi SR, Breaker RR. Cleaving DNA with DNA. Proc Natl Acad Sci U S A. 1998;95(5):2233–7. https://doi.org/10.1073/pnas.95.5.2233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Emilsson GM, Breaker RR. Deoxyribozymes: new activities and new applications. Cell Mol Life Sci. 2002;59(4):596–607. https://doi.org/10.1007/s00018-002-8452-4.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou WH, Ding JS, Liu JW. Theranostic DNAzymes. Theranostics. 2017;7(4):1010–25. https://doi.org/10.7150/thno.17736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peng HY, Newbigging AM, Wang ZX, Tao J, Deng WC, Le XC, Zhang HQ. DNAzyme-mediated assays for amplified detection of nucleic acids and proteins. Anal Chem. 2018;90(1):190–207. https://doi.org/10.1021/acs.analchem.7b04926.

    Article  CAS  PubMed  Google Scholar 

  22. McConnell EM, Cozma I, Mou QB, Brennan JD, Lu Y, Li YF. Biosensing with DNAzymes. Chem Soc Rev. 2021;50(16):8954–94. https://doi.org/10.1039/d1cs00240f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yan L, Zhou J, Zheng Y, Gamson AS, Roembke BT, Nakayama S, Sintim HO. Isothermal amplified detection of DNA and RNA. Mol Biosyst. 2014;10(5):970–1003. https://doi.org/10.1039/c3mb70304e.

    Article  CAS  PubMed  Google Scholar 

  24. Yin P, Choi HMT, Calvert CR, Pierce NA. Programming biomolecular self-assembly pathways. Nature. 2008;451(7176):318–23. https://doi.org/10.1038/nature06451.

    Article  CAS  PubMed  Google Scholar 

  25. Li BL, Ellington AD, Chen X. Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucleic Acids Res. 2011;39(16):110. https://doi.org/10.1093/nar/gkr504.

    Article  CAS  Google Scholar 

  26. Wang DN, Guo R, Wei YY, Zhang YZ, Zhao XY, Xu ZR. Sensitive multicolor visual detection of telomerase activity based on catalytic hairpin assembly and etching of Au nanorods. Biosens Bioelectron. 2018;122:247–53. https://doi.org/10.1016/j.bios.2018.09.064.

    Article  CAS  PubMed  Google Scholar 

  27. Liu JM, Zhang Y, Xie HB, Zhao L, Zheng L, Ye HM. Applications of catalytic hairpin assembly reaction in biosensing. Small. 2019;15(42):e1902989. https://doi.org/10.1002/smll.201902989.

    Article  CAS  PubMed  Google Scholar 

  28. Wang WH, Zhang C, Guo JX, Li GP, Ye BX, Zou LA. Sensitive electrochemical detection of oxytetracycline based on target triggered CHA and poly adenine assisted probe immobilization. Anal Chim Acta. 2021;1181:e338895. https://doi.org/10.1016/j.aca.2021.338895.

    Article  CAS  Google Scholar 

  29. GB/T5009.268–2016 Food safety determination of multiple elements in food, National Standard of People’s Republic of China, Beijing, China.

  30. Zhang XB, Kong RM, Lu Y. Metal ion sensors based on DNAzymes and related DNA molecules. Annu Rev Anal Chem. 2011;4(1):105–28. https://doi.org/10.1146/annurev.anchem.111808.073617.

    Article  CAS  Google Scholar 

  31. Han ST, Zhou XH, Tang YF, He M, Zhang XY, Shi HC, Xiang Y. Practical, highly sensitive, and regenerable evanescent-wave biosensor for detection of Hg2+ and Pb2+ in water. Biosens Bioelectron. 2016;80:265–72. https://doi.org/10.1016/j.bios.2016.01.070.

    Article  CAS  PubMed  Google Scholar 

  32. Fu CC, Xu WQ, Wang HL, Ding H, Liang LJ, Cong M, Xu SP. DNAzyme-based plasmonic nanomachine for ultrasensitive selective surface-enhanced raman scattering detection of lead ions via a particle-on-a-film hot spot construction. Anal Chem. 2014;86(23):11494–7. https://doi.org/10.1021/ac5038736.

    Article  CAS  PubMed  Google Scholar 

  33. Ren W, Zhang Y, Fan YZ, Dong JX, Li NB, Luo HQ. A resonance Rayleigh scattering sensor for detection of Pb2+ ions via cleavage-induced G-wire formation. J Hazard Mater. 2017;336:195–201. https://doi.org/10.1016/j.jhazmat.2017.04.039.

    Article  CAS  PubMed  Google Scholar 

  34. Zheng J, Wai JL, Lake RJ, New SY, He ZK, Lu Y. DNAzyme sensor uses chemiluminescence resonance energy transfer for rapid, portable, and ratiometric detection of metal ions. Anal Chem. 2021;93(31):10834–40. https://doi.org/10.1021/acs.analchem.1c01077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu MY, Lou XH, Du J, Guan M, Wang J, Ding XF, Zhao JL. DNAzyme-based fluorescent microarray for highly selective and sensitive detection of lead(II). Analyst. 2012;137(1):70–2. https://doi.org/10.1039/c1an15633k.

    Article  CAS  PubMed  Google Scholar 

  36. Wang L, Jin Y, Deng J, Chen GZ. Gold nanorods-based FRET assay for sensitive detection of Pb2+ using 8–17DNAzyme. Analyst. 2011;136(24):5169–74. https://doi.org/10.1039/c1an15783c.

    Article  CAS  PubMed  Google Scholar 

  37. Wang JL, Chen SH, Yuan R, Hu FX. DNA branched junctions induced the enhanced fluorescence recovery of FAM-labeled probes on rGO for detecting Pb2+. Anal Bioanal Chem. 2020;412(11):2455–63. https://doi.org/10.1007/s00216-020-02458-2.

    Article  CAS  PubMed  Google Scholar 

  38. Guo Y, Li JT, Zhang XQ, Tang YL. A sensitive biosensor with a DNAzyme for lead(II) detection based on fluorescence turn-on. Analyst. 2015;140:4642. https://doi.org/10.1039/c5an00677e.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (31571919), National Natural Science Foundation of China (31901777), Natural Science Foundation of Jilin Province (20200201218JC), and Natural Science Foundation of Chongqing (cstc2021jcyj-msxmX0927).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongxia Li or Chunyan Sun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 388 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, Z., Li, Y. et al. Signal-on fluorescent sensing strategy for Pb2+ detection based on 8–17 DNAzyme-mediated molecular beacon-type catalytic hairpin assembly circuit. Anal Bioanal Chem 414, 6581–6590 (2022). https://doi.org/10.1007/s00216-022-04218-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04218-w

Keywords

Navigation