Skip to main content

Advertisement

Log in

A catalytic hairpin assembly–based Förster resonance energy transfer sensor for ratiometric detection of ochratoxin A in food samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ochratoxin A (OTA) poses severe risks to the environment and human health, making the development of an accurate and sensitive analytical method for OTA detection essential. In this study, a catalytic hairpin assembly (CHA)–based Förster resonance energy transfer (FRET) aptasensor was developed to detect OTA using carbon quantum dots (CDs) and 6-carboxy-fluorescein (FAM) as dual signal readout. In the presence of OTA, the aptamer specifically interacted with OTA to release the helper DNA (HP), which could open the hairpin structure of FAM-labeled hairpin DNA 1 (H1-FAM) modified on the surface of gold nanoparticles (AuNPs). CHA between H1-FAM and hairpin H2 labeled with CDs (H2-CDs) can release HP for the next cycle, resulting in the occurrence of FRET with CDs as the energy donor and FAM as the energy acceptor. According to the ratio of FCDs/FFAM, the proposed aptasensor showed a wide linear range from 5.0 pg/mL to 3.0 ng/mL and a low detection limit of 1.5 pg/mL for OTA detection. Moreover, satisfactory results were obtained for OTA detection in rice, suggesting the potential application of this sensor in food safety analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ha TH. Recent advances for the detection of ochratoxin A. Toxins. 2015;7:5276–300.

    Article  CAS  Google Scholar 

  2. Zheng F, Ke W, Shi L, Liu H, Zhao Y. Plasmonic Au-Ag janus nanoparticle engineered ratiometric surface-enhanced raman scattering aptasensor for ochratoxin a detection. Anal Chem. 2019;91:11812–20.

    Article  CAS  Google Scholar 

  3. Wu G, Xiong Z, Oh S-H, Ren Y, Wang Q, Yang L. Two-color, ultra-sensitive fluorescent strategy for ochratoxin A detection based on hybridization chain reaction and DNA tweezers. Food Chem. 2021;356:129663.

  4. Liu L, Huang Q, Tanveer ZI, Jiang K, Zhang J, Pan H, Luan L, Liu X, Han Z, Wu Y. “Turn off-on” fluorescent sensor based on quantum dots and self-assembled porphyrin for rapid detection of ochratoxin A. Sens Actuators B Chem. 2020;302: 127212.

    Article  CAS  Google Scholar 

  5. Khoshbin Z, Abnous K, Taghdisi SM, Verdian A, Sameiyan E, Ramezani M, Alibolandi M. An ultra-sensitive dual-responsive aptasensor with combination of liquid crystal and intercalating dye molecules: A food toxin case study. Food Chem. 2022;381:132265.

  6. Hao L, Li M, Peng K, Ye T, Wu X, Yuan M, Cao H, Yin F, Gu H, Xu F. Fluorescence resonance energy transfer aptasensor of ochratoxin A constructed based on gold nanorods and DNA tetrahedrons. J Agric Food Chem. 2022;70:10662–8.

    Article  CAS  Google Scholar 

  7. Li Z, Miao X, Xing K, Peng X, Zhu A, Ling L. Ultrasensitive electrochemical sensor for Hg2+ by using hybridization chain reaction coupled with Ag@Au core-shell nanoparticles. Biosens Bioelectron. 2016;80:339–43.

    Article  CAS  Google Scholar 

  8. Zeng Z, Zhou R, Sun R, Zhang X, Cheng Z, Chen C, Zhu Q. Nonlinear hybridization chain reaction-based functional DNA nanostructure assembly for biosensing, bioimaging applications. Biosens Bioelectron. 2021;173:112814.

  9. Lv W, Li C, Li Y, Zhen S, Huang C. Hierarchical hybridization chain reaction for amplified signal output and cascade DNA logic circuits. Anal Chem. 2021;93:3411–7.

    Article  CAS  Google Scholar 

  10. Wang L, Zeng L, Wang Y, Chen T, Chen W, Chen G, Li C, Chen J. Electrochemical aptasensor based on multidirectional hybridization chain reaction for detection of tumorous exosomes. Sens Actuators B Chem. 2021;332:129471.

  11. Miao X, Cheng Z, Ma H, Li Z, Xue N, Wang P. Label-free platform for microRNA detection based on the fluorescence quenching of positively charged gold nanoparticles to silver nanoclusters. Anal Chem. 2018;90:1098–103.

    Article  CAS  Google Scholar 

  12. Zhang Y, Zhang X, Situ B, Wu Y, Luo S, Zheng L, Qiu Y. Rapid electrochemical biosensor for sensitive profiling of exosomal microRNA based on multifunctional DNA tetrahedron assisted catalytic hairpin assembly. Biosens Bioelectron. 2021;183:113205.

  13. Bodulev OL, Zhao S, Sakharov IY. Improving the sensitivity of the miRNA assay coupled with the mismatched catalytic hairpin assembly reaction by optimization of hairpin annealing conditions. Anal Chem. 2021;93:6824–30.

    Article  CAS  Google Scholar 

  14. Li L, Lv W, Xu Y, Li Y, Li C, Huang C. DNA logic nanodevices for the sequential imaging of cancer markers through localized catalytic hairpin assembly reaction. Anal Chem. 2022;94:4399–406.

    Article  CAS  Google Scholar 

  15. Nie Y, Jiang J, Peng K, Chai Y, Yuan R. Two kinds of DNA enzyme-powered bidirectional one-dimensional DNA walking nanomachine for payload release and biosensing. Biosens Bioelectron. 2021;175:112848.

  16. Miao P, Chai H, Tang Y. DNA hairpins and dumbbell-wheel transitions amplified walking nanomachine for ultrasensitive nucleic acid detection. ACS Nano. 2022;16:4726–33.

    Article  CAS  Google Scholar 

  17. Liu J, Ye L, Zhang Y, Yang H, Zhou L, Luo E, Lei J. Nonenzymatic target-driven DNA nanomachine for monitoring malathion contamination in living cells and bioaccumulation in foods. Anal Chem. 2022;94:5667–73.

    Article  CAS  Google Scholar 

  18. Wang S, Zhang F, Chen C, Cai C. Ultrasensitive graphene quantum dots-based catalytic hairpin assembly amplification resonance light scattering assay for p53 mutant DNA detection. Sens Actuators B Chem. 2019;291:42–7.

    Article  CAS  Google Scholar 

  19. Bodulev OL, Burkin KM, Efremov EE, Sakharov IY. One-pot microplate-based chemiluminescent assay coupled with catalytic hairpin assembly amplification for DNA detection. Anal Bioanal Chem. 2020;412:5105–11.

    Article  CAS  Google Scholar 

  20. Liu X, Zhou X, Xia X, Xiang H. Catalytic hairpin assembly-based double-end DNAzyme cascade-feedback amplification for sensitive fluorescence detection of HIV-1 DNA. Anal Chim Acta. 2020;1096:159–65.

    Article  CAS  Google Scholar 

  21. Wang L, Liu P, Liu Z, Zhao K, Ye S, Liang G, Zhu J-J. Simple tripedal DNA walker prepared by target-triggered catalytic hairpin assembly for ultrasensitive electrochemiluminescence detection of microRNA. ACS Sens. 2020;5:3584–90.

    Article  CAS  Google Scholar 

  22. Dai J, Xing C, Lin Y, Huang Y, Yang Y, Chen Z, Lu C, Yang H. Localized DNA catalytic hairpin assembly reaction on DNA origami for tumor-associated microRNA detection and imaging in live cells. Sens Actuators B Chem. 2020;344: 130195.

    Article  Google Scholar 

  23. Chai H, Wang M, Tang L, Miao P. Ultrasensitive electrochemical detection of miRNA coupling tetrahedral DNA modified gold nanoparticles tags and catalyzed hairpin assembly. Anal Chim Acta. 2021;1165: 338543.

    Article  CAS  Google Scholar 

  24. Huang Q, Ma P, Li H, Yin B, Ye B. Catalytic-hairpin-assembly-assisted DNA tetrahedron nanoprobe for intracellular microRNA imaging. ACS Appl Bio Mater. 2020;3:2861–6.

    Article  CAS  Google Scholar 

  25. Li N, Du M, Liu Y, Ji X, He Z. Multipedal DNA walker biosensors based on catalyzed hairpin assembly and isothermal strand-displacement polymerase reaction for the chemiluminescent detection of proteins. ACS Sens. 2018;3:1283–90.

    Article  CAS  Google Scholar 

  26. Chai H, Cheng W, Xu L, Gui H, He J, Miao P. Fabrication of polymeric ferrocene nanoparticles for electrochemical aptasensing of protein with target-catalyzed hairpin assembly. Anal Chem. 2022;91:9940–5.

    Article  Google Scholar 

  27. Yang P, Guo X, Zhang J, Chen C, Gan Y, Xie W, Du Y, Wu Z. Picomolar thrombin detection by orchestration of triple signal amplification strategy with hierarchically porous Ti3C2Tx MXene electrode material-catalytic hairpin assembly reaction-metallic nanoprobes. Biosens Bioelectron. 2022;208: 114228.

    Article  CAS  Google Scholar 

  28. Wang D, Guo R, Wei Y, Zhang Y, Zhao X, Xu Z. Sensitive multicolor visual detection of telomerase activity based on catalytic hairpin assembly and etching of Au nanorods. Biosens Bioelectron. 2018;122:247–53.

    Article  CAS  Google Scholar 

  29. Lu H, Zhao W, Xu J, Chen H. Visual electrochemiluminescence ratiometry on bipolar electrode for bioanalysis. Biosens Bioelectron. 2018;102:624–30.

    Article  CAS  Google Scholar 

  30. Huo X, Lu H, Xu J, Zhou H, Chen H. Recent advances of ratiometric electrochemiluminescence biosensors. J Mater Chem B. 2019;7:6469–75.

    Article  CAS  Google Scholar 

  31. Wu Y, Huang S, Zeng F, Wang J, Yu C, Huang J, Xie H, Wu S. A ratiometric fluorescent system for carboxylesterase detection with AIE dots as FRET donors. Chem Commun. 2015;51:12791–4.

    Article  CAS  Google Scholar 

  32. Chen L, Lee S, Lee M, Lim C, Choo J, Park JY, Lee S, Joo S-W, Lee K-H, Choi Y-W. DNA hybridization detection in a microfluidic channel using two fluorescently labelled nucleic acid probes. Biosens Bioelectron. 2008;23:1878–82.

    Article  CAS  Google Scholar 

  33. Feng B, You J, Zhao F, Wei M, Liu Y, Yuan K, Suo Z. A ratiometric fluorescent aptamer homogeneous biosensor based on hairpin structure aptamer for AFB1 detection. J Fluoresc. 2022;32:1695–701.

    Article  CAS  Google Scholar 

  34. Liu S, Bai J, Huo Y, Ning B, Peng Y, Li S, Han D, Kang W, Gao Z. A zirconium-porphyrin MOF-based ratiometric fluorescent biosensor for rapid and ultrasensitive detection of chloramphenicol. Biosens Bioelectron. 2020;149: 111801.

    Article  CAS  Google Scholar 

  35. Sheng E, Lu Y, Tan Y, Xiao Y, Li Z, Dai Z. Ratiometric fluorescent quantum dot-based biosensor for chlorothalonil detection via an inner-filter effect. Anal Chem. 2020;92:4364–70.

    Article  CAS  Google Scholar 

  36. Peng D, Li Y, Huang Z, Liang R, Qiu J, Liu J. Efficient DNA-catalyzed porphyrin metalation for fluorescent ratiometric Pb2+ detection. Anal Chem. 2019;91:11403–8.

    Article  CAS  Google Scholar 

  37. Wang J, Li T, Shen R, Li G, Ling L. Polymerase chain reaction-dynamic light scattering sensor for DNA and protein by using both replication and cleavage properties of Taq polymerase. Anal Chem. 2019;91:3429–35.

    Article  CAS  Google Scholar 

  38. Wang J, Li T, Li H, Li G, Wu S, Ling L. A universal colorimetric PCR biosensor based upon triplex formation with the aid of Ru(phen)2d ppx2+. Sens Actuators B Chem. 2019;278:39–45.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31671581) and the Natural Science Foundation of Henan Province (202300410206).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangmin Miao or Fan He.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 621 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wang, Y., Lin, Y. et al. A catalytic hairpin assembly–based Förster resonance energy transfer sensor for ratiometric detection of ochratoxin A in food samples. Anal Bioanal Chem 415, 867–874 (2023). https://doi.org/10.1007/s00216-022-04479-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04479-5

Keywords

Navigation