Skip to main content
Log in

Long-term continuous monitoring of microRNA in living cells using modified gold nanoprobe

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Long-term and continuous monitoring of the microRNA (miRNA) expression in living cells is essential in biomedical research, but it is currently limited by fast consumption and easy digestion of probes in the intracellular environment. Herein, we report polydopamine-modified gold nanoparticles (AuNPs@PDA) as protective and efficient nanocarriers for DNA hairpin probes (hpDNA), achieving long-term monitoring (48 h) of the miRNA (let-7a) levels in living cells after drug treatments. This method enabled excellent sensitivity and high selectivity toward let-7a with a limit of detection of 0.51 nM (n = 3) and a linear range from 1 to 100 nM. More importantly, AuNPs@PDA can not only efficiently improve the loading of hpDNA on each nanoparticle, but also effectively protect hpDNA from hydrolysis in the cell microenvironment, finally realizing the continuous monitoring of let-7a in living cells for 48 h. This simple method would be of great significance for drug screening and precision medicine.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol. 2008;9(3):219–30. https://doi.org/10.1038/nrm2347.

    Article  CAS  PubMed  Google Scholar 

  2. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;7(5):522–31. https://doi.org/10.1038/nrg1379.

    Article  CAS  Google Scholar 

  3. Esquela-Kerscher A, Slack FJ. Oncomirs — microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69. https://doi.org/10.1038/nrc1840.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao X, Li Y, Sun R, Fan Y, Mu X, Wang Y. Electrical potential-assisted DNA-RNA hybridization for rapid microRNA extraction. Anal Bioanal Chem. 2022. https://doi.org/10.1007/s00216-022-03979-8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tian J, Chu H, Zhu L, Xu W. Duplex-specific nuclease-resistant triple-helix DNA nanoswitch for single-base differentiation of miRNA in lung cancer cells. Anal Bioanal Chem. 2020;412(19):4477–82. https://doi.org/10.1007/s00216-020-02713-6.

    Article  CAS  PubMed  Google Scholar 

  6. Wang X, Cao L, Wang Y, Wang X, Liu N. Regulation of let-7 and its target oncogenes (review). Oncol Lett. 2012;3(5):955–60. https://doi.org/10.3892/ol.2012.609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Schooneveld E, Wildiers H, Vergote I, Vermeulen PB, Dirix LY, Van Laere SJ. Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res. 2015;17(1):21. https://doi.org/10.1186/s13058-015-0526-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bombonati A, Sgroi DC. The molecular pathology of breast cancer progression. J Pathol. 2011;223(2):308–18. https://doi.org/10.1002/path.2808.

    Article  CAS  Google Scholar 

  9. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065. https://doi.org/10.1158/0008-5472.CAN-05-1783.

    Article  CAS  PubMed  Google Scholar 

  10. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E. Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131(6):1109–23. https://doi.org/10.1016/j.cell.2007.10.054.

    Article  CAS  PubMed  Google Scholar 

  11. Liu X, Liu L, Xu Q, Wu P, Zuo X, Li A. MicroRNA as a novel drug target for cancer therapy. Expert Opin Biol Ther. 2012;12(5):573–80. https://doi.org/10.1517/14712598.2012.671293.

    Article  CAS  PubMed  Google Scholar 

  12. Alimova IN, Liu B, Fan Z, Edgerton SM, Dillon T, Lind SE. Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle. 2009;8(6):909–15. https://doi.org/10.4161/cc.8.6.7933.

    Article  CAS  PubMed  Google Scholar 

  13. Yin BC, Liu YQ, Ye BC. One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification. J Am Chem Soc. 2012;134(11):5064–7. https://doi.org/10.1021/ja300721s.

    Article  CAS  PubMed  Google Scholar 

  14. Qiu X, Wang P, Cao Z. Hybridization chain reaction modulated DNA-hosted silver nanoclusters for fluorescent identification of single nucleotide polymorphisms in the let-7 miRNA family. Biosens Bioelectron. 2014;60:351–7. https://doi.org/10.1016/j.bios.2014.04.040.

    Article  CAS  PubMed  Google Scholar 

  15. Zhu D, Huang J, Lu B, Zhu Y, Wei Y, Zhang Q. Intracellular microRNA imaging with MoS2-supported nonenzymatic catassembly of DNA hairpins. ACS Appl Mater Interfaces. 2019;11(23):20725–33. https://doi.org/10.1021/acsami.9b04883.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao P, Li N, Astruc D. State of the art in gold nanoparticle synthesis. Coord Chem Rev. 2013;257(3–4):638–65. https://doi.org/10.1016/j.ccr.2012.09.002.

    Article  CAS  Google Scholar 

  17. Qian R-C, Cao Y, Zhao L-J, Gu Z, Long Y-T. A two-stage dissociation system for multilayer imaging of cancer biomarker-synergic networks in single cells. Angew Chem Int Ed. 2017;56(17):4802–5. https://doi.org/10.1002/anie.201702415.

    Article  CAS  Google Scholar 

  18. Choi C, Li J, Wei K, Xu YJ, Ho L, Zhu M. A gold@polydopamine core–shell nanoprobe for long-term intracellular detection of microRNAs in differentiating stem cells. J Am Chem Soc. 2015;137(23):7337–46. https://doi.org/10.1021/jacs.5b01457.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu C, Zeng Z, Hai L, Li F, Fan C, Zhang H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc. 2013;135(16):5998–6001. https://doi.org/10.1021/ja4019572.

    Article  CAS  PubMed  Google Scholar 

  20. Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I. Gold nanoparticles for the development of clinical diagnosis methods Anal. Bioanal Chem. 2008;391(3):943–50. https://doi.org/10.1007/s00216-007-1768-z.

    Article  CAS  Google Scholar 

  21. Dai G, Choi CKK, Zhou Y, Bai Q, Xiao Y, Yang C, Choi CHJ, Ng DKP. Immobilising hairpin DNA-conjugated distyryl boron dipyrromethene on gold@polydopamine core–shell nanorods for microRNA detection and microRNA-mediated photodynamic therapy. Nanoscale. 2021;13:6499. https://doi.org/10.1039/D0NR09135A.

    Article  CAS  PubMed  Google Scholar 

  22. Sy KHS, Ho LWC, Lau WCY, Ko H, Choi CHJ. Morphological diversity, protein adsorption, and cellular uptake of polydopamine-coated gold nanoparticles. Langmuir. 2018;34:14033–45. https://doi.org/10.1021/acs.langmuir.8b02572.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang J, Zhu L, Zhu L, Zhu B, Xu Y. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir. 2011;27(23):14180–7. https://doi.org/10.1021/la202877k.

    Article  CAS  PubMed  Google Scholar 

  24. Qiang W, Li W, Li X, Chen X, Xu D. Bioinspired polydopamine nanospheres: a superquencher for fluorescence sensing of biomolecules. Chem Sci. 2014;5(8):3018–24. https://doi.org/10.1039/c4sc00085d.

    Article  CAS  Google Scholar 

  25. Xu S, Zhang G, Fang B, Xiong Q, Duan H, Lai W. Lateral flow immunoassay based on polydopamine-coated gold nanoparticles for the sensitive detection of zearalenone in maize. ACS Appl Mater Interfaces. 2019;11:31283–90. https://doi.org/10.1021/acsami.9b08789.

    Article  CAS  PubMed  Google Scholar 

  26. Dai W, Lu H, Yang F, Dong H, Zhang X. Accurate detection of intracellular microRNAs using functional Mo2C quantum dots nanoprobe. Chem Commun. 2019;55:10615–8. https://doi.org/10.1039/C9CC04261J.

    Article  CAS  Google Scholar 

  27. Zhang H, Wang Y, Zhao D, Zeng D, Xia J, Aldalbahi A. Universal fluorescence biosensor platform based on graphene quantum dots and pyrene-functionalized molecular beacons for detection of microRNAs. ACS Appl Mater Interfaces. 2015;7(30):16152–6. https://doi.org/10.1021/acsami.5b04773.

    Article  CAS  PubMed  Google Scholar 

  28. Mahani M, Mousapour Z, Divsar F, Nomani A, Ju H. A carbon dot and molecular beacon based fluorometric sensor for the cancer marker microRNA-21. Microchim Acta. 2019;186(3):132. https://doi.org/10.1007/s00604-019-3233-z.

    Article  CAS  Google Scholar 

  29. Bian F, Sun L, Cai L, Wang Y, Zhao Y, Wang S. Molybdenum disulfide-integrated photonic barcodes for tumor markers screening. Biosens Bioelectron. 2019;133:199–204. https://doi.org/10.1016/j.bios.2019.02.066.

    Article  CAS  PubMed  Google Scholar 

  30. Yu X, Hu L, Zhang F, Wang M, Xia Z, Wei W. MoS2 quantum dots modified with a labeled molecular beacon as a ratiometric fluorescent gene probe for FRET based detection and imaging of microRNA. Microchim Acta. 2018;185:239. https://doi.org/10.1007/s00604-018-2773-y.

    Article  CAS  Google Scholar 

  31. Han Y, Zou R, Wang L, Chen C, Gong H, Cai C. An amine-functionalized metal-organic framework and triple-helix molecular beacons as a sensing platform for miRNA ratiometric detection. Talanta. 2021;228(1):122199. https://doi.org/10.1016/j.talanta.2021.122199.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao H, Qu Y, Yuan F, Quan X. A visible and label-free colorimetric sensor for miRNA-21 detection based on peroxidase-like activity of graphene/gold-nanoparticle hybrids. Anal Methods. 2016;8:2005–12. https://doi.org/10.1039/C5AY03296B.

    Article  CAS  Google Scholar 

  33. Ghosh R, Singh LC, Shohet JM, Gunaratne PH. A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials. 2013;34(3):807–16. https://doi.org/10.1016/j.biomaterials.2012.10.023.

    Article  CAS  PubMed  Google Scholar 

  34. Wang N, Song L, Qiu Y, Xing H, Li J. Hybridization-activated spherical DNAzyme for cascading two-photon fluorescence emission: applied for intracellular miRNA measurement by two-photon microscopy. Sensors Actuatorors B Chem. 2019;286:250–7. https://doi.org/10.1016/j.snb.2019.01.135.

    Article  CAS  Google Scholar 

  35. Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg. 2010;251(3):499–505. https://doi.org/10.1097/SLA.0b013e3181cc939f.

    Article  PubMed  Google Scholar 

  36. Oliveras-Ferraros C, Cufí S, Vazquez-Martin A, Torees-Garcia VZ, Barco SD, Martin-Castillo BA. Micro(mi)RNA expression profile of breast cancer epithelial cells treated with the anti-diabetic drug metformin: induction of the tumor suppressor miRNA let-7a and suppression of the TGFβ-induced oncomiR miRNA-181a. Cell Cycle. 2011;10(7):1144–51. https://doi.org/10.4161/cc.10.7.15210.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Technology Project of Shenzhen City (JCYJ20200109142410170 and JCYJ20210324120601004), the National Natural Science Foundation of China (21801259 and 21974153), the Guangdong Natural Science Foundation (2022A1515011318), the Scientific Technology Project of Guangzhou City (202103000003), and the Guangdong Science and Technology Plan Project Grant (2020B1212060077).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Si-Yang Liu or Zong Dai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2478 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Yang, H., Yin, W. et al. Long-term continuous monitoring of microRNA in living cells using modified gold nanoprobe. Anal Bioanal Chem 414, 6157–6166 (2022). https://doi.org/10.1007/s00216-022-04182-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04182-5

Keywords

Navigation