Skip to main content
Log in

Poly-adenine-mediated spherical nucleic acid probes for live cell fluorescence imaging of tumor-related microRNAs

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Accurately detecting and quantifying tumor-related microRNAs (miRNAs) in living cells is of great value for early cancer diagnosis. Herein, we present poly-adenine (polyA)-mediated spherical nucleic acid (SNA) nanoprobes for intracellular miRNA imaging in living cells.

Methods and results

polyA-mediated spherical nucleic acid (pASNA) nanoprobes consist of gold nanoparticles (AuNPs) anchored with fluorophore-labeled DNA molecules pre-hybridized with recognition sequences and polyA tails. The detection performance for miRNAs in vitro was studied to confirm the feasibility of pASNA nanoprobes for imaging live cell miRNAs. Before the pASNA nanoprobes were used for imaging intracellular miRNAs in MCF-7, HeLa, and LO2 cells, the stability and non-cytotoxicity were investigated using Dnase I and a standard colorimetric CCK8 assay. Flow cytometry, qRT-PCR analyses were conducted to confirm the different expression levels of miR-155 in live cells. Results showed that the pASNA nanoprobes had good detection sensitivity and specificity, excellent stability, and low toxicity. After incubating with pASNA nanoprobes, noticeable fluorescence signal enhancement could be clearly observed in MCF-7 and HeLa cells but not LO2 cells by confocal microscopy. Flow cytometry analysis and qRT-PCR indicated that MCF-7 and HeLa cells had higher miR-155 expression levels compared to LO2 cells.

Conclusions

The pASNA nanoprobes we developed had good sensitivity and specificity, excellent nuclease stability and low toxicity, thus representing a new approach to exquisitely reveal the distribution of endogenous miRNAs in live cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. He L, Thomson JM, Hemann MT et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xing C, Chen Z, Lin Y et al (2021) Accelerated DNA tetrahedron-based molecular beacon for efficient microRNA imaging in living cells. Chem Commun (Camb) 57:3251–3254

    Article  CAS  Google Scholar 

  3. Wong WK, Wong SHD, Bian L (2020) Long-term detection of oncogenic MicroRNA in living human cancer cells by Gold@ polydopamine-shell nanoprobe. ACS Biomater Sci Eng 6:3778–3783

    Article  CAS  PubMed  Google Scholar 

  4. Rossi JJ (2009) New hope for a microRNA therapy for liver cancer. Cell 137:990–992

    Article  CAS  PubMed  Google Scholar 

  5. Acunzo M, Romano G, Wernicke D, Croce CM (2015) MicroRNA and cancer–a brief overview. Adv Biol Regul 57:1–9

    Article  CAS  PubMed  Google Scholar 

  6. Pan W, Zhang T, Yang H, Diao W, Li N, Tang B (2013) Multiplexed detection and imaging of intracellular mRNAs using a four-color nanoprobe. Anal Chem 85:10581–10588

    Article  CAS  PubMed  Google Scholar 

  7. Li N, Chang C, Pan W, Tang B (2012) A multicolor nanoprobe for detection and imaging of tumor-related mRNAs in living cells. Angew Chem Int Ed Engl 51:7426–7430

    Article  CAS  PubMed  Google Scholar 

  8. Qiao G, Gao Y, Li N, Yu Z, Zhuo L, Tang B (2011) Simultaneous detection of intracellular tumor mRNA with bi-color imaging based on a gold nanoparticle/molecular beacon. Chemistry 17:11210–11215

    Article  CAS  PubMed  Google Scholar 

  9. Hou CH, Hou SM, Hsueh YS, Lin J, Wu HC, Lin FH (2009) The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy. Biomaterials 30:3956–3960

    Article  CAS  PubMed  Google Scholar 

  10. VanGuilder HD, Vrana KE, Freeman WM (2008) Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44:619–626

    Article  CAS  PubMed  Google Scholar 

  11. Pall GS, Codony-Servat C, Byrne J, Ritchie L, Hamilton A (2007) Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucleic Acids Res 35:60

    Article  CAS  Google Scholar 

  12. Chen JJ (2007) Key aspects of analyzing microarray gene-expression data. Pharmacogenomics 8:473–482

    Article  CAS  PubMed  Google Scholar 

  13. Hu H, Zhou F, Wang B et al (2021) Autonomous operation of 3D DNA walkers in living cells for microRNA imaging. Nanoscale 13:1863–1868

    Article  CAS  PubMed  Google Scholar 

  14. Wang G, Guo Y, Liu Y, Zhou W, Wang G (2021) Algorithm-assisted detection and imaging of microRNAs in living cancer cells via the disassembly of plasmonic core-satellite probes coupled with strand displacement amplification. ACS Sens 6:958–966

    Article  CAS  PubMed  Google Scholar 

  15. Yu Y, Li L, Li G et al (2021) Intracellular enzyme-powered DNA circuit with a tunable amplifier for miRNA imaging. Chem Commun (Camb) 57:3753–3756

    Article  CAS  Google Scholar 

  16. Liu Y, Li S, Zhang L, Zhao Q, Li N, Wu Y (2020) A sensitive and specific method for microRNA detection and in situ imaging based on a CRISPR–Cas9 modified catalytic hairpin assembly. RSC Adv 10:28037–28040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dreaden E, Mackey M, Huang X, Kang B, El-Sayed M (2011) Beating cancer in multiple ways using nanogold. Chem Soc Rev 40:3391–3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. He Q, Zhang J, Chen F, Guo L, Zhu Z, Shi J (2010) An anti-ROS/hepatic fibrosis drug delivery system based on salvianolic acid B loaded mesoporous silica nanoparticles. Biomaterials 31:7785–7796

    Article  CAS  PubMed  Google Scholar 

  19. Qi H, Huang G, Han Y et al (2015) Engineering artificial machines from designable DNA materials for biomedical applications. Tissue Eng Part B 21:288–297

    Article  CAS  Google Scholar 

  20. Pei H, Zuo X, Pan D, Shi J, Huang Q, Fan C (2013) Scaffolded biosensors with designed DNA nanostructures. NPG Asia Mater 5:e51–e51

    Article  CAS  Google Scholar 

  21. Shi Y, Pan Y, Zhang H et al (2014) A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma. Biosens Bioelectron 56:39–45

    Article  CAS  PubMed  Google Scholar 

  22. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang L, Zhang H, Wang C et al (2019) Poly-adenine-mediated spherical nucleic acids for strand displacement-based DNA/RNA detection. Biosens Bioelectron 127:85–91

    Article  CAS  PubMed  Google Scholar 

  24. Li J, Huang J, Yang X et al (2018) Two-color-based nanoflares for multiplexed microRNAs imaging in live cells. Nanotheranostics 2:96–105

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang C, Zhang H, Zeng D et al (2015) Elaborately designed diblock nanoprobes for simultaneous multicolor detection of microRNAs. Nanoscale 7:15822–15829

    Article  CAS  PubMed  Google Scholar 

  26. Jacobson DR, McIntosh DB, Stevens MJ, Rubinstein M, Saleh OA (2017) Single-stranded nucleic acid elasticity arises from internal electrostatic tension. Proc Natl Acad Sci USA 114:5095–5100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peng H, Li XF, Zhang H, Le XC (2017) A microRNA-initiated DNAzyme motor operating in living cells. Nat Commun 8:14378

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhu D, Zhao D, Huang J et al (2018) Poly-adenine-mediated fluorescent spherical nucleic acid probes for live-cell imaging of endogenous tumor-related mRNA. Nanomedicine 14:1797–1807

    Article  CAS  PubMed  Google Scholar 

  29. Zhang K, Hao L, Hurst SJ, Mirkin CA (2012) Antibody-linked spherical nucleic acids for cellular targeting. J Am Chem Soc 134:16488–16491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang X, Servos MR, Liu J (2012) Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA using a pH-assisted and surfactant-free route. J Am Chem Soc 134:7266–7269

    Article  CAS  PubMed  Google Scholar 

  31. Zhang X, Liu B, Dave N, Servos MR, Liu J (2012) Instantaneous attachment of an ultrahigh density of nonthiolated DNA to gold nanoparticles and its applications. Langmuir 28:17053–17060

    Article  CAS  PubMed  Google Scholar 

  32. Blaya D, Aguilar-Bravo B, Hao F et al (2018) Expression of microRNA-155 in inflammatory cells modulates liver injury. Hepatology 68:691–706

    Article  CAS  PubMed  Google Scholar 

  33. Kono H, Nakamura M, Ohtsuka T et al (2013) High expression of microRNA-155 is associated with the aggressive malignant behavior of gallbladder carcinoma. Oncol Rep 30:17–24

    Article  PubMed  PubMed Central  Google Scholar 

  34. Czyzyk-Krzeska MF, Zhang X (2014) MiR-155 at the heart of oncogenic pathways. Oncogene 33:677–678

    Article  CAS  PubMed  Google Scholar 

  35. Ezzat WM, Amr KS, Raouf HA et al (2016) Relationship Between Serum microRNA155 and Telomerase Expression in Hepatocellular Carcinoma. Arch Med Res 47:349–355

    Article  CAS  PubMed  Google Scholar 

  36. Yin Z, Guo H, Jiang K et al (2020) Morin decreases acrolein-induced cell injury in normal human hepatocyte cell line LO2. J Funct Foods 75:586

    Article  CAS  Google Scholar 

  37. Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA (2007) Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 7:3818–3821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giljohann D, Seferos D, Daniel W, Massich M, Patel P, Mirkin C (2010) Gold nanoparticles for biology and medicine. Angew Chem 49:3280–3294

    Article  CAS  Google Scholar 

  39. Sun JF, Zhang D, Gao CJ, Zhang YW, Dai QS (2019) Exosome-mediated MiR-155 transfer contributes to hepatocellular carcinoma cell proliferation by targeting PTEN. Med Sci Monit Basic Res 25:218–228

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu X, Li Y, Li Z, Hou T (2021) miR-155 promotes proliferation and epithelial-mesenchymal transition of MCF-7 cells. Exp Ther Med 21:218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fang H, Shuang D, Yi Z, Sheng H, Liu Y (2016) Up-regulated microRNA-155 expression is associated with poor prognosis in cervical cancer patients. Biomed Pharmacother 83:64–69

    Article  CAS  PubMed  Google Scholar 

  42. Santhekadur PK, Kumar DP (2020) RISC assembly and post-transcriptional gene regulation in Hepatocellular Carcinoma. Genes Dis 7:199–204

    Article  CAS  PubMed  Google Scholar 

  43. Sullivan RP, Fogel LA, Leong JW et al (2013) MicroRNA-155 tunes both the threshold and extent of NK cell activation via targeting of multiple signaling pathways. J Immunol 191:5904–5913

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (In vitro diagnostic technology and equipment), Science and Technology Service Network Initiative Program of the Chinese Academy of Sciences (KFJ-STS-QYZD-2021-08-002), Program of Shanghai Academic/Technology Research Leader (20XD1404600), Program of Shanghai Municipal Science and Technology Commission (20511107600).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the collection of reference, the contents of the article and the charts.

Corresponding authors

Correspondence to Yi Xu or Xianqiang Mi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary material includes DNA sequences, the gel electrophoresis image of ds-DNA, di-block polyA-DNA and reporter DNA, DLS results of AuNPs and pASNA nanoprobes, nuclease stability and cytotoxicity results and the optimized incubation time between tumor cells and pASNA nanoprobes. Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Q., He, G., Wang, C. et al. Poly-adenine-mediated spherical nucleic acid probes for live cell fluorescence imaging of tumor-related microRNAs. Mol Biol Rep 49, 3705–3712 (2022). https://doi.org/10.1007/s11033-022-07210-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07210-w

Keywords

Navigation