Skip to main content
Log in

A home-made sampling system coupled to hectowatt-MPT mass spectrometry in positive ion mode to confirm target ions of copper and zinc from Poyang Lake, China

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel home-made H2SO4-Nafion (HN) tube sampling system coupled to a line ion trap mass spectrometer (LTQ-MS) with a versatile ambient ionization source, hectowatt microwave plasma torch (HMPT), has manifested unique advantages for picking directly metal elements in aqueous samples and acquiring the fully characteristic MPT mass spectra of copper and zinc composite ions. Here, we report the development of a novel HN-HMPT-LTQ-MS for metal elements assay based on environmental water to analyze samples of Poyang Lake, China. Detailed multi-stage tandem mass spectra show that the general structural form of target ions is [M(NO3)x(H2O)y(OH)z]+ for the positive ion mode. Under the optimized conditions, the proposed method provided low limits of detection (LODs) of 0.23 μg.L−1 for 63Cu+ and 1.1 μg.L−1 for 66Zn+, with relative standard deviations (RSDs) of less than 12.7% by MPT-LTQ-MS. This new result has met the requirements of national standards (GB 5750.6–2006) and is only about one magnitude order larger than the LOD of ICP-MS method. A wide linear response range of about 4 orders of magnitude for the method with linear coefficients (R2) of 0.99709 – 0.99962 for copper and zinc tested was in accordance with that of ICP-MS. Except for the recovery of 79% for the third sample and 123.8% for the seventh sample, the present method also provided good recoveries (84 – 119.3%) in spiked 10 batches of drinking water samples. Furthermore, it is envisioned that the developed approach might build a powerful hectowatt-MPT-MS platform for food security detection, drug analysis, and origin traceability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Detection EEPo, Adults ToHBCi. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Circulation. 2001;106(19):3143–3421.

  2. Smith G. Epidemiology of dyslipidemia and economic burden on the healthcare system. Am J Manag Care. 2007;13(3):S68.

    PubMed  Google Scholar 

  3. Xu J, Xu G, Fang J. Association between serum copper and stroke risk factors in adults: evidence from the National Health and Nutrition Examination Survey, 2011–2016. Biol Trace Elem Res. 2022;200(3):1089–94.

    Article  CAS  Google Scholar 

  4. Liu CS, Wu HM, Kao SH, Wei YH. Serum trace elements, glutathione, copper/zinc superoxide dismutase, and lipid peroxidation in epileptic patients with phenytoin or carbamazepine monotherapy. Clin Neuropharmacol. 1998;21(1):62–4.

    CAS  PubMed  Google Scholar 

  5. He JA, Tell GS, Tang YC, Mo PS, He GQ. Relation of serum zinc and copper to lipids and lipoproteins: the Yi People Study. J Am Coll Nutr. 1992;11(1):74–8.

    Article  CAS  Google Scholar 

  6. Ooi E, Watts G, Ng T, Barrett P. Effect of dietary fatty acids on human lipoprotein metabolism: a comprehensive update. Nutrients. 2015;7(6):4416–25.

    Article  CAS  Google Scholar 

  7. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, Eaton JK, Frenkel E, Kocak M, Corsello SM, Lutsenko S, Kanarek N, Santagata S, Golub TR. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375:1254–61.

    Article  CAS  Google Scholar 

  8. Longstreet DA, Heath DL, Panaretto KS, Vink R. Correlations suggest low magnesium may lead to higher rates of type 2 diabetes in Indigenous Australians. Rural Remote Health. 2007;7(4):843.

    CAS  PubMed  Google Scholar 

  9. Klevay LM. Cardiovascular disease from copper deficiency–a history. J Nutr. 2000;130(2S Suppl):489S.

    Article  CAS  Google Scholar 

  10. Roohani N, Hurrell R, Kelishadi R, Schulin R. Zinc and its importance for human health: an integrative review. J Res Med Sci. 2013;18(2):144–57.

    PubMed  PubMed Central  Google Scholar 

  11. Todoli JL, Mermet JM. Sample introduction systems for the analysis of liquid microsamples by ICP-AES and ICP-MS. Spectroc Acta Pt B-Atom Spectr. 2006;61(3):239–83.

    Article  Google Scholar 

  12. Silvestre MD, Lagarda MJ, Farre R, Martinez-Costa C, Brines J. Copper, iron and zinc determinations in human milk using FAAS with microwave digestion. Food Chem. 2000;68(1):95–9.

    Article  CAS  Google Scholar 

  13. Platzner TI, Segal I, Halicz L. Selected isotope ratio measurements of light metallic elements (Li, Mg, Ca, and Cu) by multiple collector ICP-MS. Anal Bioanal Chem. 2008;390(2):441–50.

    Article  CAS  Google Scholar 

  14. Frankowski M, Ziola-Frankowska A, Kurzyca I, Siepak J, Novotny K, Vaculovic T, Kanicky V, Siepak M. Determination of aluminium in groundwater samples by GF-AAS, ICP-AES, ICP-MS and modelling of inorganic aluminium complexes. Environ Monit Assess. 2011;182(1–4):71–84.

    Article  CAS  Google Scholar 

  15. Vyhnanovsky J, Kratzer J, Benada O, Matousek T, Mester Z, Sturgeon RE, Dedina J, Musil S. Diethyldithiocarbamate enhanced chemical generation of volatile palladium species, their characterization by AAS, ICP-MS, TEM and DART-MS and proposed mechanism of action. Anal Chim Acta. 2018;1005:16–26.

    Article  CAS  Google Scholar 

  16. Reed TB. Induction-coupled plasma torch. J Appl Phys. 1961;32(5):821–4.

    Article  CAS  Google Scholar 

  17. Beauchemin D. Inductively coupled plasma mass spectrometry. Anal Chem. 2010;82(12):4786–810.

    Article  CAS  Google Scholar 

  18. Takáts Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306(5695):471–3.

    Article  Google Scholar 

  19. Harper JD, Charipar NA, Mulligan CC, Zhang XR, Cooks RG, Ouyang Z. Low-temperature plasma probe for ambient desorption ionization. Anal Chem. 2008;80:9097–104.

    Article  CAS  Google Scholar 

  20. Hayen H, Michels A, Franzke J. Dielectric barrier discharge ionization for liquid chromatography/mass spectrometry. Anal Chem. 2009;81(24):10239–45.

    Article  CAS  Google Scholar 

  21. Pavlovich MJ, Musselman B, Hall AB. Direct analysis in real time-mass spectrometry (DART-MS) in forensic and security applications. Mass Spectrom Rev. 2018;37(2):171–87.

    Article  CAS  Google Scholar 

  22. Cooks RG, Ouyang Z, Takats Z, Wiseman JM. Ambient mass spectrometry. Science. 2006;311(5767):1566–70.

    Article  CAS  Google Scholar 

  23. Fernandez FM, Cody RB, Green MD, Hampton CY, McGready R, Sengaloundeth S, White NJ, Newton PN. Characterization of solid counterfeit drug samples by desorption electrospray ionization and direct-analysis-in-real-time coupled to time-of-flight mass spectrometry. ChemMedChem. 2006;1(7):702–5.

    Article  CAS  Google Scholar 

  24. Yao ZP. Characterization of proteins by ambient mass spectrometry. Mass Spectrom Rev. 2012;31(4):437–47.

    Article  CAS  Google Scholar 

  25. Xiong XH, Zhang Y, Zhou RZ, Wang SX, Jiang T, Zeng B, Qi WH, Zhu ZQ. Detection of common transition metal in water by microwave plasma torch mass spectra in negative ion mode. Chem J Chin Univ-Chin. 2016;37(5):867–72.

    CAS  Google Scholar 

  26. GB 5750.6–2006. Standard examination methods for drinking water-metal parameters. National Standards of the People's Republic of China. .

  27. Pack BW, Broekaert JA, Guzowski JP, Poehlman J, Hieftje GM. Determination of halogenated hydrocarbons by helium microwave plasma torch time-of-flight mass spectrometry coupled to gas chromatography. Anal Chem. 1998;70(18):3957–63.

    Article  CAS  Google Scholar 

  28. Zhang T, Zhou W, Jin W, Zhou J, Handberg E, Zhu Z, Chen H, Jin Q. Direct desorption/ionization of analytes by microwave plasma torch for ambient mass spectrometric analysis. J Mass Spectrom. 2013;48(6):669–76.

    Article  CAS  Google Scholar 

  29. Jiang T, Xiong XH, Wang SX, Luo YL, Fei Q, Yu AM, Zhu ZQ. Direct mass spectrometric analysis of zinc and cadmium in water by microwave plasma torch coupled with a linear ion trap mass spectrometer. Int J Mass Spectrom. 2016;399:33–9.

    Article  Google Scholar 

  30. Beauchemin D. Inductively coupled plasma mass spectrometry. Anal Chem. 2002;74(12):2873–93.

    Article  CAS  Google Scholar 

  31. Beauchemin D. Inductively coupled plasma mass spectrometry. Anal Chem. 2004;76(12):3395–415.

    Article  CAS  Google Scholar 

  32. Church SE. Inductively coupled plasmas in analytical atomic spectrometry : Edited by Akbar Montaser and D. W. Golightly. VCH Publishers, Inc., . Geochim Cosmochim Acta. 1994; 52 (4):951–951.

  33. Xu JQ, Zhong DC, Chingin K, Song LL, Chen HW. Chemical profiling of bulk alloys using micro-electrochemical probe mass spectrometry. Anal Chem. 2019;91(13):8304–9.

    Article  CAS  Google Scholar 

  34. Institution BS. Water quality - requirements for the comparison of the relative recovery of microorganisms by two quantitative methods. ISO International Standard (ISO) eng no 17994. 2014.

  35. Medvedev NS, Shaverina AV, Tsygankova AR, Saprykin AI. Analysis of high-purity germanium dioxide by ETV-ICP-AES with preliminary concentration of trace elements. Talanta. 2016;155:358–62.

    Article  CAS  Google Scholar 

  36. Abbasse G, Ouddane B, Fischer JC. Determination of total and labile fraction of metals in seawater using solid phase extraction and inductively coupled plasma atomic emission spectrometry (ICP-AES). J Anal At Spectrom. 2002;17(10):1354–8.

    Article  CAS  Google Scholar 

  37. Zhang H, Jiang YH, Wang M, Wang P, Shi GX, Ding MJ. Spatial characterization, risk assessment, and statistical source identification of the dissolved trace elements in the Ganjiang River-feeding tributary of the Poyang Lake. China Environ Sci Pollut R. 2017;24(3):2890–903.

    Article  CAS  Google Scholar 

  38. Geng M, Qi H, Liu X, Gao B, Yang Z, Lu W, Sun R. Occurrence and health risk assessment of selected metals in drinking water from two typical remote areas in China. Environ Sci Pollut R. 2016;23(9):8462–9.

    Article  CAS  Google Scholar 

  39. Gupta SK, Chabukdhara M, Kumar P, Singh J, Bux F. Evaluation of ecological risk of metal contamination in river Gomti, India: a biomonitoring approach. Ecotoxicol Environ Saf. 2014;110:49–55.

    Article  CAS  Google Scholar 

  40. Taylor HE, Antweiler RC, Roth DA, Alpers CN, Dileanis P. Selected trace elements in the Sacramento River, California: occurrence and distribution. Arch Environ Contam Toxicol. 2012;62(4):557–69.

    Article  CAS  Google Scholar 

  41. Asante KA, Agusa T, Subramanian A, Ansa-Asare OD, Biney CA, Tanabe S. Contamination status of arsenic and other trace elements in drinking water and residents from Tarkwa, a historic mining township in Ghana. Chemosphere. 2007;66(8):1513–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding authors are grateful for the kindly discussion and assistance from Guangdong Provincial Engineering Research Center for On‐line Source Apportionment System of Air Pollution.

Funding

This work was supported by the National Key Research and Development Project (No. 2017YFF0106002), Chinese National Science Foundation (No. 21866027), Guangzhou Development Zone International Science and Technology Cooperation Project (No. 2018GH08), Guangdong International Science and Technology Cooperation Project (No. 2018A050506020), and Key Special Project of “Pollution Prevention and Remediation” of Guangdong Province Key Field R&D Program (No. 2019B110206001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqiang Zhu or Zihui Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.58 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, T., Jiang, F., Zhong, Y. et al. A home-made sampling system coupled to hectowatt-MPT mass spectrometry in positive ion mode to confirm target ions of copper and zinc from Poyang Lake, China. Anal Bioanal Chem 414, 6115–6126 (2022). https://doi.org/10.1007/s00216-022-04172-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04172-7

Keywords

Navigation