Skip to main content
Log in

Colorimetric detection of Salmonella typhimurium based on hexadecyl trimethyl ammonium bromide-induced supramolecular assembly of β-cyclodextrin-capped gold nanoparticles

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We developed an effective and specific colorimetric strategy to detect Salmonella typhimurium (S. typhimurium) based on hexadecyl trimethyl ammonium bromide (CTAB)-induced supramolecular assembly of β-cyclodextrin-capped gold nanoparticles (β-CD-AuNPs). In this study, ssDNA aptamer of S. typhimurium could combine with CTAB to form the supramolecular ssDNA-CTAB composite, so the ssDNA aptamer was applied to control the concentration of CTAB. In the presence of S. typhimurium, ssDNA aptamers selectively bound to S. typhimurium but not to CTAB, leading to the host–guest chemistry reaction of CTAB and β-CD resulting in β-CD-AuNP supramolecular assembly aggregation with an obvious color change. The ratio of absorption at 650 and 520 nm (A650nm/A520nm) has a linear correlation to the log scale of the concentration of the bacteria (1 × 102–1 × 107 CFU/mL) with a low limit of detection (LOD) of 13 CFU/mL. In addition, this optical sensor has good selectivity and practicability. In milk samples, the recovery was 93.55–111.32%, which suggested its potential application in real samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Kirk MD, Pires SM, Black RE, Caipo M, Crump JA, Devleesschauwer B, Döpfer D, Fazil A, Fischer-Walker CL, Hald T, Hall AJ, Keddy KH, Lake RJ, Lanata CF, Torgerson PR, Havelaar AH, Angulo FJ. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS Med. 2015;12(12):e1001921. https://doi.org/10.1371/journal.pmed.1001921.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhang L, Huang R, Liu W, Liu H, Zhou X, Xing D. Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification. Biosens Bioelectron. 2016;86:1–7. https://doi.org/10.1016/j.bios.2016.05.100.

    Article  CAS  PubMed  Google Scholar 

  3. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen J, Kruse H. Food-borne diseases—the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol. 2010;139(Suppl 1):S3-15. https://doi.org/10.1016/j.ijfoodmicro.2010.01.021.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Narvaez-Bravo C, Rodas-Gonzalez A, Fuenmayor Y, Flores-Rondon C, Carruyo G, Moreno M, Perozo-Mena A, Hoet AE. Salmonella on feces, hides and carcasses in beef slaughter facilities in Venezuela. Int J Food Microbiol. 2013;166(2):226–30. https://doi.org/10.1016/j.ijfoodmicro.2013.07.009.

    Article  PubMed  Google Scholar 

  5. Lee K-M, Runyon M, Herrman TJ, Phillips R, Hsieh J. Review of Salmonella detection and identification methods: aspects of rapid emergency response and food safety. Food Control. 2015;47:264–76. https://doi.org/10.1016/j.foodcont.2014.07.011.

    Article  Google Scholar 

  6. Singer RS, Cooke CL, Maddox CW, Isaacson RE, Wallace RL. Use of pooled samples for the detection of Salmonella in feces by polymerase chain reaction. J Vet Diagn Invest. 2006;18(4):319–25. https://doi.org/10.1177/104063870601800401.

  7. Yao S, Li J, Pang B, Wang X, Shi Y, Song X, Xu K, Wang J, Zhao C. Colorimetric immunoassay for rapid detection of Staphylococcus aureus based on etching-enhanced peroxidase-like catalytic activity of gold nanoparticles. Mikrochim Acta. 2020;187(9):504. https://doi.org/10.1007/s00604-020-04473-7.

    Article  CAS  PubMed  Google Scholar 

  8. Chen S, Zong X, Zheng J, Zhang J, Zhou M, Chen Q, Man C, Jiang Y. A colorimetric strategy based on aptamer-catalyzed hairpin assembly for the on-site detection of Salmonella typhimurium in milk. Foods. 2021;10(11):2539. https://doi.org/10.3390/foods10112539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang S, Zheng L, Cai G, Liu N, Liao M, Li Y, Zhang X, Lin J. A microfluidic biosensor for online and sensitive detection of Salmonella typhimurium using fluorescence labeling and smartphone video processing. Biosens Bioelectron. 2019;140: 111333. https://doi.org/10.1016/j.bios.2019.111333.

    Article  CAS  PubMed  Google Scholar 

  10. Zhu W, Chen Y, He Y, Fang W, Ying Y, Li Y, Fu Y. Cooperation mode of outer surface and inner space of nanochannel: separation-detection system based on integrated nanochannel electrode for rapid and facile detection of Salmonella. Anal Chem. 2020;92(2):1818–25. https://doi.org/10.1021/acs.analchem.9b03644.

    Article  CAS  PubMed  Google Scholar 

  11. Bhandari D, Chen FC, Bridgman RC. Detection of salmonella typhimurium in romaine lettuce using a surface plasmon resonance biosensor. Biosensors (Basel). 2019;9(3):94. https://doi.org/10.3390/bios9030094.

  12. Ma X, Lin X, Xu X, Wang Z. Fabrication of gold/silver nanodimer SERS probes for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Microchim Acta. 2021;188(6):202. https://doi.org/10.1007/s00604-021-04791-4.

    Article  CAS  Google Scholar 

  13. Farka Z, Juřík T, Pastucha M, Skládal P. Enzymatic precipitation enhanced surface plasmon resonance immunosensor for the detection of Salmonella in powdered milk. Anal Chem. 2016;88(23):11830–6. https://doi.org/10.1021/acs.analchem.6b03511.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Tian J, Li K, Tian H, Xu W. Label-free visual biosensor based on cascade amplification for the detection of Salmonella. Anal Chim Acta. 2019;1075:144–51. https://doi.org/10.1016/j.aca.2019.05.020.

    Article  CAS  PubMed  Google Scholar 

  15. Du G, Wang L, Zhang D, Ni X, Zhou X, Xu H, Xu L, Wu S, Zhang T, Wang W. Colorimetric aptasensor for progesterone detection based on surfactant-induced aggregation of gold nanoparticles. Anal Biochem. 2016;514:2–7. https://doi.org/10.1016/j.ab.2016.09.006.

    Article  CAS  PubMed  Google Scholar 

  16. Tarokh A, Pebdeni AB, Othman HO, Salehnia F, Hosseini M. Sensitive colorimetric aptasensor based on g-C(3)N(4)@Cu(2)O composites for detection of Salmonella typhimurium in food and water. Mikrochim Acta. 2021;188(3):87. https://doi.org/10.1007/s00604-021-04745-w.

    Article  CAS  PubMed  Google Scholar 

  17. Yi J, Wu P, Li G, Xiao W, Li L, He Y, He Y, Ding P, Chen C. A composite prepared from carboxymethyl chitosan and aptamer-modified gold nanoparticles for the colorimetric determination of Salmonella typhimurium. Mikrochim Acta. 2019;186(11):711. https://doi.org/10.1007/s00604-019-3827-5.

    Article  CAS  PubMed  Google Scholar 

  18. Wu W-h, Li M, Wang Y, Ouyang H-x, Wang L, Li C-x, Cao Y-c, Meng Q-h, Lu J-x. Aptasensors for rapid detection of Escherichia coli O157:H7 and Salmonella typhimurium. Nanoscale Res Lett. 2012;7(1):658. https://doi.org/10.1186/1556-276X-7-658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lehn J-M. Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (nobel lecture). Angew Chem Int Ed in Engl. 1988;27(1):89–112. https://doi.org/10.1002/anie.198800891.

    Article  Google Scholar 

  20. Yang L, Tan X, Wang Z, Zhang X. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem Rev. 2015;115(15):7196–239. https://doi.org/10.1021/cr500633b.

    Article  CAS  PubMed  Google Scholar 

  21. Ma X, Zhao Y. Biomedical applications of supramolecular systems based on host-guest interactions. Chem Rev. 2015;115(15):7794–839. https://doi.org/10.1021/cr500392w.

    Article  CAS  PubMed  Google Scholar 

  22. Palanisamy S, Sakthinathan S, Chen SM, Thirumalraj B, Wu TH, Lou BS, Liu X. Preparation of β-cyclodextrin entrapped graphite composite for sensitive detection of dopamine. Carbohydr Polym. 2016;135:267–73. https://doi.org/10.1016/j.carbpol.2015.09.008.

    Article  CAS  PubMed  Google Scholar 

  23. Connors KA. The stability of cyclodextrin complexes in solution. Chem Rev. 1997;97(5):1325–58. https://doi.org/10.1021/cr960371r.

    Article  CAS  PubMed  Google Scholar 

  24. Lai W-F, Rogach AL, Wong W-T. Chemistry and engineering of cyclodextrins for molecular imaging. Chem Soc Rev. 2017;46(20):6379–419. https://doi.org/10.1039/C7CS00040E.

    Article  CAS  PubMed  Google Scholar 

  25. Geng WC, Sessler JL, Guo DS. Supramolecular prodrugs based on host-guest interactions. Chem Soc Rev. 2020;49(8):2303–15. https://doi.org/10.1039/c9cs00622b.

    Article  CAS  PubMed  Google Scholar 

  26. Wang T, Cheng Y, Zhang Y, Zha J, Ye J, Chu Q, Cheng G. β-cyclodextrin modified quantum dots as pseudo-stationary phase for direct enantioseparation based on capillary electrophoresis with laser-induced fluorescence detection. Talanta. 2020;210:120629. https://doi.org/10.1016/j.talanta.2019.120629.

    Article  CAS  PubMed  Google Scholar 

  27. Ban R, Abdel-Halim ES, Zhang J, Zhu JJ. β-Cyclodextrin functionalised gold nanoclusters as luminescence probes for the ultrasensitive detection of dopamine. Analyst. 2015;140(4):1046–53. https://doi.org/10.1039/c4an02161d.

    Article  CAS  PubMed  Google Scholar 

  28. Cabaleiro-Lago C, Nilsson M, Söderman O. Self-diffusion NMR studies of the host−guest interaction between β-cyclodextrin and alkyltrimethylammonium bromide surfactants. Langmuir. 2005;21(25):11637–44. https://doi.org/10.1021/la0516835.

    Article  CAS  PubMed  Google Scholar 

  29. Oh T, Takahashi T, Kim S, Heller MJ. CTAB enhancement of FRET in DNA structures. J Biophotonics. 2016;9(1–2):49–54. https://doi.org/10.1002/jbio.201500221.

    Article  CAS  PubMed  Google Scholar 

  30. Bi S, Wang Y, Pang B, Yan L, Wang T. An investigation on the interaction of DNA with hesperetin/apigenin in the presence of CTAB by resonance Rayleigh light scattering technique and its analytical application. Spectrochim Acta Part A Mol Biomol Spectrosc. 2012;90:158–64. https://doi.org/10.1016/j.saa.2012.01.037.

    Article  CAS  Google Scholar 

  31. Joshi R, Janagama H, Dwivedi HP, Senthil Kumar TM, Jaykus LA, Schefers J, Sreevatsan S. Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol Cell Probes. 2009;23(1):20–8. https://doi.org/10.1016/j.mcp.2008.10.006.

    Article  CAS  PubMed  Google Scholar 

  32. Liu Y, Male KB, Bouvrette P, Luong JHT. Control of the size and distribution of gold nanoparticles by unmodified cyclodextrins. Chem Mater. 2003;15(22):4172–80. https://doi.org/10.1021/cm0342041.

    Article  CAS  Google Scholar 

  33. Hollamby MJ, Eastoe J, Chemelli A, Glatter O, Rogers S, Heenan RK, Grillo I. Separation and purification of nanoparticles in a single step. Langmuir. 2010;26(10):6989–94. https://doi.org/10.1021/la904225k.

    Article  CAS  PubMed  Google Scholar 

  34. Wen D, Liu W, Haubold D, Zhu C, Oschatz M, Holzschuh M, Wolf A, Simon F, Kaskel S, Eychmüller A. Gold aerogels: three-dimensional assembly of nanoparticles and their use as electrocatalytic interfaces. ACS Nano. 2016;10(2):2559–67. https://doi.org/10.1021/acsnano.5b07505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bao L, Liu C, Zhang Z-L, Pang D-W. Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning. Adv Mater. 2015;27(10):1663–7. https://doi.org/10.1002/adma.201405070.

    Article  CAS  PubMed  Google Scholar 

  36. Mel’nikov SM, Sergeyev VG, Yoshikawa K. Discrete coil-globule transition of large DNA induced by cationic surfactant. J Am Chem Soc. 1995;117(9):2401–8. https://doi.org/10.1021/ja00114a004.

    Article  Google Scholar 

  37. Dias RS, Innerlohinger J, Glatter O, Miguel MG, Lindman B. Coil-globule transition of DNA molecules induced by cationic surfactants: a dynamic light scattering study. J Phys Chem B. 2005;109(20):10458–63. https://doi.org/10.1021/jp0444464.

    Article  CAS  PubMed  Google Scholar 

  38. Wu Y, Liu L, Zhan S, Wang F, Zhou P. Ultrasensitive aptamer biosensor for arsenic(III) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles. Analyst. 2012;137(18):4171–8. https://doi.org/10.1039/c2an35711a.

    Article  CAS  PubMed  Google Scholar 

  39. Hu J, Tang F, Jiang YZ, Liu C. Rapid screening and quantitative detection of Salmonella using a quantum dot nanobead-based biosensor. Analyst. 2020;145(6):2184–90. https://doi.org/10.1039/d0an00035c.

    Article  CAS  PubMed  Google Scholar 

  40. Xu M, Wang R, Li Y. Rapid detection of Escherichia coli O157:H7 and Salmonella typhimurium in foods using an electrochemical immunosensor based on screen-printed interdigitated microelectrode and immunomagnetic separation. Talanta. 2016;148:200–8. https://doi.org/10.1016/j.talanta.2015.10.082.

    Article  CAS  PubMed  Google Scholar 

  41. Luo F, Li Z, Dai G, Lu Y, He P, Wang Q. Simultaneous detection of different bacteria by microchip electrophoresis combined with universal primer-duplex polymerase chain reaction. J Chromatogr A. 2020;1615:460734. https://doi.org/10.1016/j.chroma.2019.460734.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 82073557), Jilin Province Science and Technology Development Plan Item (Grant No. 20200602010ZP), and Interdisciplinary Research Funding Program for Doctoral Postgraduates of Jilin University (Grant No. 101832020DJX082).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingxing Liu, Juan Li or Chao Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1245 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, S., Wang, X., Wang, F. et al. Colorimetric detection of Salmonella typhimurium based on hexadecyl trimethyl ammonium bromide-induced supramolecular assembly of β-cyclodextrin-capped gold nanoparticles. Anal Bioanal Chem 414, 6069–6076 (2022). https://doi.org/10.1007/s00216-022-04166-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04166-5

Keywords

Navigation