Skip to main content
Log in

Rational construction of deep-red fluorescent probe for rapid detection of HClO and its application in bioimaging and paper-based sensing

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Hypochlorous acid (HClO), the core bactericidal substance of the human immune system, plays a vital role in many physiological and pathological processes in the human body. In this work, we designed and synthesized a novel deep-red fluorescent probe TCF-ClO for the determination of hypochlorous acid through theoretical analysis. The results showed that probe TCF-ClO exhibited excellent characteristics of long-wavelength emission (635 nm), fast response (< 1 min), and low detection limit (24 nM). In addition, it had been successfully used for imaging of HClO in living HeLa cells. More importantly, the TCF-ClO composited paper-based sensing material was successfully constructed. The RGB/gray value was obtained from a mobile phone and computer, which could achieve the quantitative detection of HClO, with a linear detection range of 0–50 μM and a detection limit of 1.09 μM (RGB mode)/3.38 μM (gray mode). The function of the paper-based sensor extended from qualitative to quantitative detection of HClO, and it is expected to become a portable device widely used in the environmental area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Bio Med. 2010;48(6):749–62.

    Article  CAS  Google Scholar 

  2. Dickinson BC, Chang CJ. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol. 2011;7(8):504–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhou J, Li L, Shi W, Gao X, Li X, Ma H. HOCl can appear in the mitochondria of macrophages during bacterial infection as revealed by a sensitive mitochondrial-targeting fluorescent probe. Chem Sci. 2015;6(8):4884–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang Y, Zhang P, Gao M, Zeng F, Qin A, Wu S, Tang BZ. Ratiometric detection and imaging of endogenous hypochlorite in live cells and in vivo achieved by using an aggregation induced emission (AIE)-based nanoprobe. Chem Commun. 2016;52(45):7288–91.

    Article  CAS  Google Scholar 

  5. Zhu B, Wu L, Zhang M, Wang Y, Liu C, Wang Z, Duan Q, Jia P. A highly specific and ultrasensitive near-infrared fluorescent probe for imaging basal hypochlorite in the mitochondria of living cells. Biosens Bioelectron. 2018;107:218–23.

    Article  CAS  PubMed  Google Scholar 

  6. Kenmoku S, Urano Y, Kojima H, Nagano T. Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis. J Am Chem Soc. 2007;129(23):7313–8.

    Article  CAS  PubMed  Google Scholar 

  7. Yuan L, Wang L, Agrawalla BK, Park S-J, Zhu H, Sivaraman B, Peng J, Xu Q-H, Chang Y-T. Development of targetable two-photon fluorescent probes to image hypochlorous acid in mitochondria and lysosome in live cell and inflamed mouse model. J Am Chem Soc. 2015;137(18):5930–8.

    Article  CAS  PubMed  Google Scholar 

  8. Koide Y, Urano Y, Hanaoka K, Terai T, Nagano T. Development of an Si-rhodamine-based far-red to near-infrared fluorescence probe selective for hypochlorous acid and its applications for biological imaging. J Am Chem Soc. 2011;133(15):5680–2.

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Wu L, Liu C, Guo B, Zhu B, Wang Z, Duan Q, Ma Z, Zhang X. A highly specific and ultrasensitive fluorescent probe for basal lysosomal HOCl detection based on chlorination induced by chlorinium ions (Cl+). J Mater Chem B. 2017;5(18):3377–82.

    Article  CAS  PubMed  Google Scholar 

  10. Yap YW, Whiteman M, Cheung NS. Chlorinative stress: an under appreciated mediator of neurodegeneration? Cell Signal. 2007;19(2):219–28.

    Article  CAS  PubMed  Google Scholar 

  11. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12(12):931–47.

    Article  CAS  PubMed  Google Scholar 

  12. Dębowska K, Dębski D, Michałowski B, Dybala-Defratyka A, Wójcik T, Michalski R, Jakubowska M, Selmi A, Smulik R, Piotrowski Ł, Adamus J, Marcinek A, Chlopicki S, Sikora A. Characterization of fluorescein-based monoboronate probe and its application to the detection of peroxynitrite in endothelial cells treated with doxorubicin. Chem Res Toxicol. 2016;29(5):735–46.

    Article  PubMed  CAS  Google Scholar 

  13. Li K, Hou J-T, Yang J, Yu X-Q. A tumor-specific and mitochondria-targeted fluorescent probe for real-time sensing of hypochlorite in living cells. Chem Commun. 2017;53(40):5539–41.

    Article  CAS  Google Scholar 

  14. Shi D, Chen S, Dong B, Zhang Y, Sheng C, James TD, Guo Y. Evaluation of HOCl-generating anticancer agents by an ultrasensitive dual-mode fluorescent probe. Chem Sci. 2019;10(13):3715–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiang Y, Zheng G, Duan Q, Yang L, Zhang J, Zhang H, He J, Sun H, Ho D. Ultra-sensitive fluorescent probes for hypochlorite acid detection and exogenous/endogenous imaging of living cells. Chem Commun. 2018;54(57):7967–70.

    Article  CAS  Google Scholar 

  16. Dong W, Sun C, Sun M, Ge H, Asiri AM, Marwani HM, Ni R, Wang S. Fluorescent copper nanoclusters for the iodide-enhanced detection of hypochlorous acid. ACS Appl Nano Mater. 2020;3(1):312–8.

    Article  CAS  Google Scholar 

  17. Shiraishi Y, Yamada C, Takagi S, Hirai T. Fluorometric and colorimetric detection of hypochlorous acid and hypochlorite by a naphthalimide–dicyanoisophorone conjugate. J Photoch Photobio A. 2021;406:112997.

    Article  CAS  Google Scholar 

  18. Zhu B, Tang W, Ren Y, Duan X. Chemiluminescence of conjugated-polymer nanoparticles by direct oxidation with hypochlorite. Anal Chem. 2018;90(22):13714–22.

    Article  CAS  PubMed  Google Scholar 

  19. Gan Y, Yin G, Zhang X, Zhou L, Zhang Y, Li H, Yin P. Turn-on fluorescent probe for sensing exogenous and endogenous hypochlorous acid in living cells, zebrafishes and mice. Talanta. 2021;225:122030.

    Article  CAS  PubMed  Google Scholar 

  20. He M, Sun H, Wei J, Zhang R, X.e. Han, Z. Ni,. A highly sensitive, fast responsive and reversible naphthalimide-based fluorescent probe for hypochlorous acid and ascorbic acid in aqueous solution and living cells. Spectrochim Acta A. 2021;247:119138.

    Article  CAS  Google Scholar 

  21. Han J, Yang S, Wang B, Song X. Tackling the selectivity dilemma of benzopyrylium–coumarin dyes in fluorescence sensing of HClO and SO2. Anal Chem. 2021;93(12):5194–200.

    Article  CAS  PubMed  Google Scholar 

  22. Chen J, Lu Y, Wu Y, Chen Z, Liu X, Zhang C, Sheng J, Li L, Chen W, Song X. De novo design of a robust fluorescent probe for basal HClO imaging in a mouse Parkinson’s disease model. ACS Chem Neurosci. 2021;12(21):4058–64.

    Article  CAS  PubMed  Google Scholar 

  23. Liu C, Shang Y, Zhao T, Liang L, He S, Zhao L, Zeng X, Wang T. Facile functionalized fluorescein derivative as a reversible fluorescence probe for selective monitor of the redox cycle between hypochlorous acid and cysteine. Sens Actuators B Chem. 2021;348:130632.

    Article  CAS  Google Scholar 

  24. Świerczyńska M, Słowiński D, Grzelakowska A, Szala M, Romański J, Pierzchała K, Siarkiewicz P, Michalski R, Podsiadły R. Selective, stoichiometric and fast-response fluorescent probe based on 7-nitrobenz-2-oxa-1,3-diazole fluorophore for hypochlorous acid detection. Dyes Pigments. 2021;193:109563.

    Article  CAS  Google Scholar 

  25. Duan Y-M, Wang S, Cao F, Zhang Q, Chen S, Zhang Y, Wang K-P, Hu Z-Q. Facile and highly selective ratiometric fluorescence probe based on benzo[5]helicene for the detection of hypochlorous acid. Ind Eng Chem Res. 2020;59:992–9.

    Article  CAS  Google Scholar 

  26. Shen S-L, Huang X-Q, Jiang H-L, Lin X-H, Cao X-Q. A rhodamine B-based probe for the detection of HOCl in lysosomes. Anal Chim Acta. 2019;1046:185–91.

    Article  CAS  PubMed  Google Scholar 

  27. Chen Y, Wei T, Zhang Z, Zhang W, Lv J, Chen T, Chi B, Wang F, Chen X. A mitochondria-targeted fluorescent probe for ratiometric detection of hypochlorite in living cells. Chinese Chem Lett. 2017;28(10):1957–60.

    Article  CAS  Google Scholar 

  28. Liu C, Li Z, Yu C, Chen Y, Liu D, Zhuang Z, Jia P, Zhu H, Zhang X, Yu Y, Zhu B, Sheng W. Development of a concise rhodamine-formylhydrazine type fluorescent probe for highly specific and ultrasensitive tracing of basal HOCl in live cells and zebrafish. ACS Sensors. 2019;4(8):2156–63.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu B, Wu L, Zhang M, Wang Y, Zhao Z, Wang Z, Duan Q, Jia P, Liu C. A fast-response, highly specific fluorescent probe for the detection of picomolar hypochlorous acid and its bioimaging applications. Sens Actuators B Chem. 2018;263:103–8.

    Article  CAS  Google Scholar 

  30. Jiao C, Liu Y, Pang J, Lu W, Zhang P, Wang Y. A simple lysosome-targeted probe for detection of hypochlorous acid in living cells. J Photoch Photobio A. 2020;392:112399.

    Article  CAS  Google Scholar 

  31. Luo P, Zhao X. A sensitive and selective fluorescent probe for real-time detection and imaging of hypochlorous acid in living cells. ACS Omega. 2021;6:12287–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu Y, Ma Y, Gao W, Ma S, Lin W. Construction of a fluorescent probe with large stokes shift and deep red emission for sensing of the viscosity in hyperglycemic mice. Dyes Pigm. 2021;195:109674.

    Article  CAS  Google Scholar 

  33. Kim SH, Woo H-C, Kim MH. Solid-phase colorimetric sensing probe for bromide based on a tough hydrogel embedded with silver nanoprisms. Anal Chim Acta. 2020;1131:80–9.

    Article  CAS  PubMed  Google Scholar 

  34. Liu X, Yang Y, Xing X, Wang Y. Grey level replaces fluorescent intensity: fluorescent paper sensor based on ZnO nanoparticles for quantitative detection of Cu2+ without photoluminescence spectrometer. Sens Actuators B Chem. 2018;255:2356–66.

    Article  CAS  Google Scholar 

  35. Chen X, Huang X, Liu G, Tu Y, Fan C, Pu S. A highly selective colorimetric and fluorescent probe for cysteine sensing: application in live cell imaging and test strips. Dyes Pigments. 2021;196:109810.

    Article  CAS  Google Scholar 

  36. Lan L, Niu Q, Li T. A highly selective colorimetric and ratiometric fluorescent probe for instantaneous sensing of Hg2+ in water, soil and seafood and its application on test strips. Anal Chim Acta. 2018;1023:105–14.

    Article  CAS  PubMed  Google Scholar 

  37. Li B, Gu X, Wang M, Liu X, Xu K. A novel “off-on-off” fluorescent probe for sensing of Fe3+ and F− successively in aqueous solution and its application in cells. Dyes Pigments. 2021;194:109637.

    Article  CAS  Google Scholar 

  38. Sedgwick AC, Han H-H, Gardiner JE, Bull SD, He X-P, James TD. Long-wavelength fluorescent boronate probes for the detection and intracellular imaging of peroxynitrite. Chem Commun. 2017;53(95):12822–5.

    Article  CAS  Google Scholar 

  39. Gwynne L, Williams GT, Yan K-C, Gardiner JE, Hilton KLF, Patenall BL, Hiscock JR, Maillard J-Y, He X-P, James TD, Sedgwick AC, Jenkins ATA. The evaluation of ester functionalised TCF-based fluorescent probes for the detection of bacterial species. Isr J Chem. 2021;61(3–4):234–8.

    Article  CAS  Google Scholar 

  40. Nie L, Gao C, Shen T, Jing J, Zhang S, Zhang X. Dual-site fluorescent probe to monitor intracellular nitroxyl and GSH-GSSG oscillations. Anal Chem. 2019;91(7):4451–6.

    Article  CAS  PubMed  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09. Wallingford: Gaussian Inc; 2009.

    Google Scholar 

  42. Schäfer A, Huber C, Ahlrichs R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys. 1994;100:5829–35.

    Article  Google Scholar 

  43. Schuchardt K, Didier BT, Elsethagen TO, Sun L, Gurumoorthi V, Chase JM, Li JY, Windus TL. Basis set exchange: a community database for computational sciences. J Chem Inf Model. 2007;47(3):1045–52.

    Article  CAS  PubMed  Google Scholar 

  44. Runge E, Gross EKU. density-functional theory for time-dependent systems. Phys Rev Lett. 1984;52(12):997–1000.

    Article  CAS  Google Scholar 

  45. Luo P, Xu J, Shen B, Xu P. A mitochondria-targeted fluorescence probe for visualizing detection of hypochlorite in living cells. ChemistrySelect. 2021;6(34):9144–8.

    Article  CAS  Google Scholar 

  46. Deng Y, Feng S, Xia Q, Gong S, Feng G. A novel reaction-based fluorescence probe for rapid imaging of HClO in live cells, animals, and injured liver tissues. Talanta. 2020;215:120901.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21807085, 21807086, 21807087).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xilang Jin or Mengyao She.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2991 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Jin, X., Ma, X. et al. Rational construction of deep-red fluorescent probe for rapid detection of HClO and its application in bioimaging and paper-based sensing. Anal Bioanal Chem 414, 5887–5897 (2022). https://doi.org/10.1007/s00216-022-04154-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04154-9

Keywords

Navigation