Iyengar GV, Rapp A. Human placenta as a ‘dual’ biomarker for monitoring fetal and maternal environment with special reference to potentially toxic trace elements. Part 3: Toxic trace elements in placenta and placenta as a biomarker for these elements. Sci Total Environ. 2001;280:221–38. https://doi.org/10.1016/S0048-9697(01)00827-0.
CAS
Article
PubMed
Google Scholar
Iyengar GV, Rapp A. Human placenta as a ‘dual’ biomarker for monitoring fetal and maternal environment with special reference to potentially toxic trace elements.: Part 2: Essential minor, trace and other (non-essential) elements in human placenta. Sci Total Environ. 2001;280:207–19. https://doi.org/10.1016/S0048-9697(01)00826-9.
CAS
Article
PubMed
Google Scholar
Kot K, Kosik-Bogacka D, Łanocha-Arendarczyk N, Malinowski W, Szymański S, Mularczyk M, Tomska N, Rotter I. Interactions between 14 elements in the human placenta, fetal membrane and umbilical cord. Int J Environ Res Public Health. 2019;16:1615. https://doi.org/10.3390/ijerph16091615.
CAS
Article
PubMed Central
Google Scholar
Özdemir Y, Börekci B, Levet A, Kurudirek M. Assessment of trace element concentration distribution in human placenta by wavelength dispersive X-ray fluorescence: effect of neonate weight and maternal age. Appl Radiat Isot. 2009;67:1790–5. https://doi.org/10.1016/j.apradiso.2009.06.007.
CAS
Article
PubMed
Google Scholar
Gómez-Roig M, Mazarico E, Cuadras D, Muniesa M, Pascal R, Ferrer P, Cantallops M, Arraez M, Gratacós E, Falcon M. Placental chemical elements concentration in small fetuses and its relationship with Doppler markers of placental function. Placenta. 2021;110:1–8. https://doi.org/10.1016/j.placenta.2021.05.001.
CAS
Article
PubMed
Google Scholar
Stasenko S, Bradford EM, Piasek M, Henson MC, Varnai VM, Jurasović J, Kušec V. Metals in human placenta: focus on the effects of cadmium on steroid hormones and leptin. J Appl Toxicol. 2010;30:242–53. https://doi.org/10.1002/jat.1490.
CAS
Article
PubMed
Google Scholar
de Moraes ML, de Faria BR, Santo RE, da Silva SF, de Almeida LB, de Jesus EFO, de Carvalho Sardinha FL, do Carmo M d GT. Distribution of calcium, iron, copper, and zinc in two portions of placenta of teenager and adult women. Biol Trace Elem Res. 2011;143:1271–81. https://doi.org/10.1007/s12011-011-8963-7.
CAS
Article
PubMed
Google Scholar
Anthis AHC, Tsolaki E, Didierlaurent L, Staubli S, Zboray R, Neels A, Dietrich D, Manser P, Desbiolles LM, Leschka S, Wildermuth S, Lehner S, Chavatte-Palmer P, Jochum W, Wick P, Dommann A, Bürki-Turnherr T, Fischer T, Hornung R, et al. Nano-analytical characterization of endogenous minerals in healthy placental tissue: mineral distribution, composition and ultrastructure. Analyst. 2019;144:6850–7. https://doi.org/10.1039/C9AN01312A.
CAS
Article
PubMed
Google Scholar
Osada H, Watanabe Y, Nishimura Y, Yukawa M, Seki K, Sekiya S. Profile of trace element concentrations in the feto-placental unit in relation to fetal growth. Acta Obstet Gynecol Scand. 2002;81:931–7. https://doi.org/10.1080/j.1600-0412.2002.811006.x.
Article
PubMed
Google Scholar
Al-Saleh I, Shinwari N, Mashhour A, Mohamed GED, Rabah A. Heavy metals (lead, cadmium and mercury) in maternal, cord blood and placenta of healthy women. Int J Hyg Environ Health. 2011;214:79–101. https://doi.org/10.1016/j.ijheh.2010.10.001.
CAS
Article
PubMed
Google Scholar
Singh J, Singh VK, Anand M, Kumar P, Siddiqui MKJ. Placental lead and its interaction with some essential metals among women from Lucknow, India. Asian J Med Sci. 2010;1:32–6. https://doi.org/10.3126/ajms.v1i2.3199.
Article
Google Scholar
Roverso M, Berté C, Marco VD, Lapolla A, Badocco D, Pastore P, Visentin S, Cosmi E. The metallome of the human placenta in gestational diabetes mellitus†. Metallomics. 2015;7:1146–54. https://doi.org/10.1039/c5mt00050e.
CAS
Article
PubMed
Google Scholar
Stojsavljević A, Rovčanin M, Rovčanin B, Miković Ž, Jeremić A, Perović M, Manojlović D. Human biomonitoring of essential, nonessential, rare earth, and noble elements in placental tissues. Chemosphere. 2021;285:131518. https://doi.org/10.1016/j.chemosphere.2021.131518.
CAS
Article
PubMed
Google Scholar
Sakamoto M, Yasutake A, Domingo JL, Chan HM, Kubota M, Murata K. Relationships between trace element concentrations in chorionic tissue of placenta and umbilical cord tissue: potential use as indicators for prenatal exposure. Environ Int. 2013;60:106–11. https://doi.org/10.1016/j.envint.2013.08.007.
CAS
Article
PubMed
Google Scholar
Zhou C, Zhang R, Cai X, Xiao R, Yu H. Trace elements profiles of maternal blood, umbilical cord blood, and placenta in Beijing, China. J Matern Fetal Neonatal Med. 2019;32:1755–61. https://doi.org/10.1080/14767058.2017.1416602.
CAS
Article
PubMed
Google Scholar
Donnelly L, Campling G. Functions of the placenta. Anaesth Intensive Care. 2008;9:124–7. https://doi.org/10.1016/j.mpaic.2008.01.005.
Article
Google Scholar
Osman K, Åkesson A, Berglund M, Bremme K, Schütz A, Ask K, Vahter M. Toxic and essential elements in placentas of Swedish women. Clin Biochem. 2000;33:131–8. https://doi.org/10.1016/S0009-9120(00)00052-7.
CAS
Article
PubMed
Google Scholar
Kubala-Kukuś A, Banaś D, Braziewicz J, Majewska U, Pajek M. Comparative study of trace element contents in human full-term placenta and fetal membranes by total reflection X-ray fluorescence. Spectrochim Acta B At Spectrosc. 2003;58:725–34. https://doi.org/10.1016/S0584-8547(02)00285-9.
CAS
Article
Google Scholar
Marguí E, Ricketts P, Fletcher H, Karydas AG, Migliori A, Leani JJ, Hidalgo M, Queralt I, Voutchkov M. Total reflection X-ray fluorescence as a fast multielemental technique for human placenta sample analysis. Spectrochim Acta B At Spectrosc. 2017;130:53–9. https://doi.org/10.1016/j.sab.2017.02.008.
CAS
Article
Google Scholar
Bilo F, Borgese L, Pardini G, Marguí E, Zacco A, Dalipi R, Federici S, Bettinelli M, Volante M, Bontempi E, Depero EL. Evaluation of different quantification modes for a simple and reliable determination of Pb, Zn and Cd in soil suspensions by total reflection X-ray fluorescence spectrometry. J Anal At Spectrom. 2019;34:930–9. https://doi.org/10.1039/C9JA00040B.
CAS
Article
Google Scholar
Manci EA, Blackburn WR. Regional variations in the levels of zinc, iron, copper, and calcium in the term human placenta. Placenta. 1987;8:497–502. https://doi.org/10.1016/0143-4004(87)90078-6.
CAS
Article
PubMed
Google Scholar
Ronco AM, Arguello G, Muñoz L, Gras N, Llanos M. Metals content in placentas from moderate cigarette consumers: correlation with newborn birth weight. Biometals. 2005;18:233–41. https://doi.org/10.1007/s10534-005-0583-2.
CAS
Article
PubMed
Google Scholar
Punshon T, Chen S, Finney L, Howard L, Jackson BP, Karagas MR, Ornvold K. High-resolution elemental mapping of human placental chorionic villi using synchrotron X-ray fluorescence spectroscopy. Anal Bioanal Chem. 2015;407:6839–50. https://doi.org/10.1007/s00216-015-8861-5.
CAS
Article
PubMed
PubMed Central
Google Scholar
Trunova V, Sidorina A, Zvereva V, Churin B. Changes in the elemental content of rat heart as a result of the fixation in formalin analyzed by synchrotron radiation X-ray fluorescent analysis. J Trace Elem Med Biol. 2013;27:76–7. https://doi.org/10.1016/j.jtemb.2012.05.007.
CAS
Article
PubMed
Google Scholar
Bush VJ, Moyer TP, Batts KP, Parisi JE. Essential and toxic element concentrations in fresh and formalin-fixed human autopsy tissues. Clin Chem. 1995;41:284–94. https://doi.org/10.1093/clinchem/41.2.284.
CAS
Article
PubMed
Google Scholar
McCormack MA, Jackson BP, Dutton J. Effects of formalin fixation on trace element concentrations in bottlenose dolphin (Tursiops truncatus) tissues. Environ Toxicol Chem. 2020;39:1149–64. https://doi.org/10.1002/etc.4709.
CAS
Article
PubMed
Google Scholar
Bischoff K, Lamm C, Erb HN, Hillebrandt JR. The effects of formalin fixation and tissue embedding of bovine liver on copper, iron, and zinc analysis. J Vet Diagn Investig. 2008;20:220–4. https://doi.org/10.1177/104063870802000213.
Article
Google Scholar
Osterode W, Falkenberg G, Ferenci P, Wrba F. Quantitative trace element mapping in liver tissue from patients with Wilson’s disease determined by micro X-ray fluorescence. J Trace Elem Med Biol. 2019;51:42–9. https://doi.org/10.1016/j.jtemb.2018.09.007.
CAS
Article
PubMed
Google Scholar
Müller J-C, Horstmann M, Traeger L, Steinbicker AU, Sperling M, Karst U. μXRF and LA-ICP-TQMS for quantitative bioimaging of iron in organ samples of a hemochromatosis model. J Trace Elem Med Biol. 2019;52:166–75. https://doi.org/10.1016/j.jtemb.2018.12.012.
CAS
Article
PubMed
Google Scholar
Wróbel PM, Bała S, Czyzycki M, Golasik M, Librowski T, Ostachowicz B, Piekoszewski W, Surówka A, Lankosz M. Combined micro-XRF and TXRF methodology for quantitative elemental imaging of tissue samples. Talanta. 2017;162:654–9. https://doi.org/10.1016/j.talanta.2016.10.043.
CAS
Article
PubMed
Google Scholar
Dalipi R, Marguí E, Borgese L, Depero LE. Multi-element analysis of vegetal foodstuff by means of low power total reflection X-ray fluorescence (TXRF) spectrometry. Food Chem. 2017;218:348–55. https://doi.org/10.1016/j.foodchem.2016.09.022.
CAS
Article
PubMed
Google Scholar
Allegretta I, Gattullo CE, Renna M, Paradiso VM, Terzano R. Rapid multi-element characterization of microgreens via total-reflection X-ray fluorescence (TXRF) spectrometry. Food Chem. 2019;296:86–93. https://doi.org/10.1016/j.foodchem.2019.05.187.
CAS
Article
PubMed
Google Scholar
La Calle ID, Costas M, Cabaleiro N, Lavilla I, Bendicho C. Use of high-intensity sonication for pre-treatment of biological tissues prior to multielemental analysis by total reflection X-ray fluorescence spectrometry. Spectrochim Acta B At Spectrosc. 2012;67:43–9. https://doi.org/10.1016/j.sab.2011.12.007.
CAS
Article
Google Scholar
Marguí E, Jablan J, Queralt I, Bilo F, Borgese L. Potential of total-reflection X-ray spectrometry for multielement analysis of biological samples using dilution or suspension sample preparation techniques. X-Ray Spectrometry n/a. 2021. https://doi.org/10.1002/xrs.3230.
Bilo F, Borgese L, Zacco A, Lazo P, Zoani C, Zappa G, Bontempi E, Depero LE. Total reflection X-ray fluorescence spectroscopy to evaluate heavy metals accumulation in legumes. J Anal Bioanal Tech. 2015;7. https://doi.org/10.4172/2155-9872.1000292.
Marguí E, de Fátima MA, de Lurdes PM, Hidalgo M, Queralt I, Carvalho ML. Total reflection X-ray spectrometry (TXRF) for trace elements assessment in edible clams. Appl Spectrosc. 2014;68:1241–6. https://doi.org/10.1366/13-07364.
CAS
Article
PubMed
Google Scholar
Gruber A, Müller R, Wagner A, Colucci S, Spasić MV, Leopold K. Total reflection X-ray fluorescence spectrometry for trace determination of iron and some additional elements in biological samples. Anal Bioanal Chem. 2020. https://doi.org/10.1007/s00216-020-02614-8.
US EPA O (2015) SW-846 Test Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices. https://www.epa.gov/hw-sw846/sw-846-test-method-3052-microwave-assisted-acid-digestion-siliceous-and-organically-based. Accessed 10 Sep 2021
Li Z-M, Benker B, Bao Q, Henkelmann B, Corsten C, Michalke B, Pauluschke-Fröhlich J, Flisikowski K, Schramm K-W, De Angelis M. Placental distribution of endogenous and exogenous substances: a pilot study utilizing cryo-sampled specimen off delivery room. Placenta. 2020;100:45–53. https://doi.org/10.1016/j.placenta.2020.08.009.
CAS
Article
PubMed
Google Scholar
Sato I, Sera K, Suzuki T, Kobayashi H, Tsuda S. Effects of formalin-preservation on element concentrations in animal tissues. J Toxicol Sci. 2006;31:191–5. https://doi.org/10.2131/jts.31.191.
CAS
Article
PubMed
Google Scholar
Gellein K, Flaten TP, Erikson KM, Aschner M, Syversen T. Leaching of trace elements from biological tissue by formalin fixation. Biol Trace Elem Res. 2008;121:221–5. https://doi.org/10.1007/s12011-007-8051-1.
CAS
Article
PubMed
Google Scholar
Becker JS, Matusch A, Wu B. Bioimaging mass spectrometry of trace elements – recent advance and applications of LA-ICP-MS: a review. Anal Chim Acta. 2014;835:1–18. https://doi.org/10.1016/j.aca.2014.04.048.
CAS
Article
PubMed
Google Scholar
Carvalho ML, Custódio PJ, Reus U, Prange A. Elemental analysis of human amniotic fluid and placenta by total-reflection X-ray fluorescence and energy-dispersive X-ray fluorescence: child weight and maternal age dependence. Spectrochim Acta B At Spectrosc. 2001;56:2175–80. https://doi.org/10.1016/S0584-8547(01)00280-4.
Article
Google Scholar
Cerrillos L, Fernández R, Machado MJ, Morillas I, Dahiri B, Paz S, Gonzalez-Weller D, Gutiérrez A, Rubio C, Hardisson A, Moreno I, Fernández-Palacín A. Placental levels of metals and associated factors in urban and sub-urban areas of Seville (Spain). J Trace Elem Med Biol. 2019;54:21–6. https://doi.org/10.1016/j.jtemb.2019.03.006.
CAS
Article
PubMed
Google Scholar
Odland JØ, Nieboer E, Romanova N, Thomassen Y, Hofoss D, Lund E. Factor analysis of essential and toxic elements in human placentas from deliveries in artic and subarctic areas of Russia and Norway. J Environ Monit. 2001;3:177–84. https://doi.org/10.1039/b008949o.
CAS
Article
PubMed
Google Scholar