Skip to main content
Log in

Surface engineered bimetallic gold/silver nanoclusters for in situ imaging of mercury ions in living organisms

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Chemical sensing for the sensitive and reliable detection of mercury(II) ions (Hg2+) is of great importance in environmental protection, food safety, and biomedical applications. Due to the bio-enrichment property of Hg2+ in organisms, it is particularly meaningful to develop an effective tool that can in situ and rapidly monitor the level of Hg2+ in living organisms. In this work, we report ligand functionalized gold-silver bimetallic nanoclusters with bright red fluorescence as intracellular probes for imaging Hg2+ in living cells and zebrafish. The bimetallic nanoclusters of DTT-GSH@Au/AgNCs (DG-Au/AgNCs) with strong fluorescence that benefited from the synergistic effect of Au and Ag atoms were obtained through a one-pot synthesis method, incorporating glutathione (GSH) and dithiothreitol (DTT) as the reducers and functionalized ligands. Attractively, the bright red fluorescence of DG-Au/AgNCs could be rapidly and selectively quenched by Hg2+ within 1 min with a very low detection limit of 1.01 nM. Additionally, DG-Au/AgNCs had a great advantage in the detection of Hg2+ in living cells and zebrafish owing to its notably strong red fluorescence at 665 nm, which could avoid effectively auto-fluorescence interference from the organism. Such easily prepared bimetallic fluorescent nanoclusters would be expected to provide a noninvasive and sensitive approach in the detection of heavy metals in situ for environmental protection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang LY, Zhang W, Ren MY, Cao FF, Chen FF, Zhang YT, Shang LH. Mercury distribution in a typical shallow lake in northern China and its reemission from sediment. Ecotoxicol Environ Safe. 2020;192:110316.

    Article  CAS  Google Scholar 

  2. Kim KH, Kabir E, Jahan SA. A review on the distribution of Hg in the environment and its human health impacts. J Hazard Mater. 2016;306:376–85.

    Article  CAS  Google Scholar 

  3. Kim HN, Ren WX, Kim JS, Yoon J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev. 2012;41:3210–44.

    Article  CAS  Google Scholar 

  4. Li Z, Wei Q, Yuan R, Zhou X, Liu H, Shan H, Song Q. A new room temperature ionic liquid l-butyl-3-trimethylsilylimidazolium hexafluorophosphate as a solvent for extraction and preconcentration of mercury with determination by cold vapor atomic absorption spectrometry. Talanta. 2007;71:68–72.

    Article  CAS  Google Scholar 

  5. Shi JB, Ji XM, Wu Q, Liu HW, Qu GB, Yin YG, Hu LG, Jiang GB. Tracking mercury in individual tetrahymena using a capillary single cell inductively coupled plasma mass spectrometry online system. Anal Chem. 2020;92:622–7.

    Article  CAS  Google Scholar 

  6. Zhu Zh, Chan G, Ray S, Zhang X, Hieftje G. Use of a solution cathode glow discharge for cold vapor generation of mercury with determination by ICP atomic emission spectrometry. Anal Chem. 2008;80:7043–50.

    Article  CAS  Google Scholar 

  7. Oskolok KV, Monogarova OV, Alov NV. Determination of mercury (II) in drinking water by total reflection X-ray fluorescence spectrometry and liquid-liquid microextraction. Anal Lett. 2018;51:2457–67.

    Article  CAS  Google Scholar 

  8. Carter KP, Young AM, Palmer AE. Fluorescent sensors for measuring metal ions in living systems. Chem Rev. 2014;114:4564–601.

    Article  CAS  Google Scholar 

  9. Li Y, Xie JF, Chang CC, Wang CM, Tu HL. Highly sensitive detection of mercury ions using zincophosphite framework nanoparticle–polyaniline composites. ACS Appl Nano Mater. 2020;10:9724–30.

    Article  Google Scholar 

  10. Egan JG, Hynes AJ, Fruehwald HM, Ebralidze II, King SD, Esfahani RAM, Naumkin FY, Easton EB, Zenkina OV. A novel material for the detection and removal of mercury (II) based on a 2, 6-bis (2-thienyl) pyridine receptor. J Mater Chem C. 2019;33:10187–95.

    Article  Google Scholar 

  11. Das S, Sarkar A, Rakshit A, Datta A. A sensitive water-soluble reversible optical probe for Hg2+ detection. Inorg Chem. 2018;57:5273–81.

    Article  CAS  Google Scholar 

  12. Lim JW, Kim TY, Woo MA. Trends in sensor development toward next-generation point-of-care testing for mercury. Biosensors Bioelectron. 2021;183:113228.

    Article  CAS  Google Scholar 

  13. Gill R, Zayats M, Willner I. Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed Engl. 2008;47:7602–25.

    Article  CAS  Google Scholar 

  14. Zhang LB, Wang EK. Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today. 2014;9:132–57.

    Article  CAS  Google Scholar 

  15. Xu JQ, Zhu XM, Zhou X, Khusbu FY, Ma CB. Recent advances in the bioanalytical and biomedical applications of DNA templated silver nanoclusters. Trac Trend Anal Chem. 2020;124:115786.

    Article  CAS  Google Scholar 

  16. Bai XL, Xu SY, Wang LY. Full range pH stable Au-clusters in nanogel for confinement enhanced emission and improved sulfide sensing in living cells. Anal Chem. 2018;90:3270–5.

    Article  CAS  Google Scholar 

  17. Sun HH, Qing TP, He XX, Shangguan JF, Jia RC, Bu HC, Huang J, Wang KM. Rapid synthesis of Au/Ag bimetallic nanoclusters with highly biochemical stability and its applications for temperature and ratiometric pH sensing. Anal Chim Acta. 2019;1070:88–96.

    Article  CAS  Google Scholar 

  18. Xie Y, Xianyu Y, Wang NX, Yan ZY, Liu Y, Zhu K, Hatzakis NS, Jiang XY. Functionalized gold nanoclusters identify highly reactive oxygen species in living organisms. Adv Funct Mater. 2018;28:1702026.

    Article  Google Scholar 

  19. Xu HF, Yu LS, Zhang SQ, Xu XY, Chen TT, Ye HZ, Zhu X. Signal on fluorescence assay for pyrophosphate ions based on DNA stabilized silver nanoclusters. Luminescence. 2019;34:774–8.

    Article  CAS  Google Scholar 

  20. Jia MN, Mi WY, Guo SS, Yang QZ, Jin Y, Shao N. Peptide-capped functionalized Ag/Au bimetal nanoclusters with enhanced red fluorescence for lysosome targeted imaging of hypochlorite in living cells. Talanta. 2020;216:120926.

    Article  CAS  Google Scholar 

  21. Song CX, Xu JY, Chen Y, Zhang LL, Lu Y, Qing ZH. DNA templated fluorescent nanoclusters for metal ions detection. Molecules. 2019;24:4189.

    Article  CAS  Google Scholar 

  22. Babaee E, Barati A, Gholivand MB, Taherpour AA, Zolfaghar N, Shamsipu M. Determination of Hg2+ and Cu2+ ions by dual emissive Ag/Au nanocluster/carbon dots nanohybrids: switching the selectivity by pH adjustment. J Hazard Mater. 2019;367:437–46.

    Article  CAS  Google Scholar 

  23. Liu R, Duan S, Bao L, Wu Z, Zhou J, Yu R. Photonic crystal enhanced gold-silver nanoclusters fluorescent sensor for Hg2+ ion. Anal Chim Acta. 2020;1114:50–7.

    Article  CAS  Google Scholar 

  24. Liu JJ, Geng YJ, Li DW, Yao H, Huo ZP, Li YF, Zhang K, Zhu SJ, Wei HT, Xu WQ, Jiang JL, Yang B. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum. Adv Mater. 2020;32:1906641.

    Article  CAS  Google Scholar 

  25. Chu SY, Wang HQ, Du YX, Yang F, Yang L, Jiang CL. Portable smartphone platform integrated with a nanoprobe based fluorescent paper strip: visual monitoring of glutathione in human serum for health prognosis. ACS Sustain Chem Eng. 2020;8:8175–83.

    Article  CAS  Google Scholar 

  26. Gupta A, Chaudhary A, Mehta P, Dwivedi C, Khan S, Verma NC, Nandi CK. Nitrogen doped, thiol-functionalized carbon dots for ultrasensitive Hg (II) detection. Chem Commun. 2015;51:10750–3.

    Article  CAS  Google Scholar 

  27. Yang Z, Xu M, Liu Y, He F, Gao F, Su Y, Wei H, Zhang Y. Nitrogen doped, carbon rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale. 2014;6:1890–5.

    Article  CAS  Google Scholar 

  28. Jiang K, Wang Y, Gao X, Cai C, Lin H. Facile, quick and gram scale synthesis of ultralong lifetime room temperature phosphorescent carbon dots by microwave irradiation. Angew Chem Int Ed Engl. 2018;57:6216–20.

    Article  CAS  Google Scholar 

  29. Tao S, Lu S, Geng Y, Zhu S, Redfern SAT, Song Y, Feng T, Xu W, Yang B. Design of metal free polymer carbon dots: a new class of room temperature phosphorescent materials. Angew Chem Int Ed Engl. 2018;57:2393–8.

    Article  CAS  Google Scholar 

  30. Luo ZT, Yuan X, Yu Y, Zhang QB, Leong DT, Lee JY, Xie JP. From aggregation induced emission of Au (I)-thiolate complexes to ultrabright Au (0) @ Au (I)-thiolate core-shell nanoclusters. J Am Chem Soc. 2012;134:16662–70.

    Article  CAS  Google Scholar 

  31. Li JZ, Zhang SM, Yu Y, Wang YM, Zhang L, Lin BX, Guo ML, Cao YJ. A novel universal nanoplatform for ratiometric fluorescence biosensing based on silver nanoclusters beacon. Chem Eng J. 2020;391:123526.

    Article  CAS  Google Scholar 

  32. Zang J, Li C, Zhou K, Dong H, Chen B, Wang F, Zhao G. Nanomolar Hg2+ detection using β-lactoglobulin stabilized fluorescent gold nanoclusters in beverage and biological media. Anal Chem. 2018;88:10275–83.

    Article  Google Scholar 

  33. Qi YX, Zhang M, Zhu A, Shi G. Terbium (III)/gold nanocluster conjugates: the development of a novel ratiometric fluorescent probe for mercury (II) and a paper-based visual sensor. Analyst. 2015;140:5656–61.

    Article  CAS  Google Scholar 

  34. Liu W, Wang X, Wang Y, Li J, Shen D, Kang Q, Chen L. Ratiometric fluorescence sensor based on dithiothreitol modified carbon dots-gold nanoclusters for the sensitive detection of mercury ions in water samples. Sensors Actuators B Chem. 2018;262:810–7.

    Article  CAS  Google Scholar 

  35. Hu X, Wang W, Huang Y. Copper nanocluster based fluorescent probe for sensitive and selective detection of Hg2+ in water and food stuff. Talanta. 2016;154:409–15.

    Article  CAS  Google Scholar 

  36. Peng J, Ling J, Zhang XQ, Bai HP, Zheng L, Cao QE, Ding ZT. Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine rich DNA hybridization. Spectrochim Acta A Mol Biomol Spectrosc. 2015;137:1250–7.

    Article  CAS  Google Scholar 

  37. Zuo X, Zhang H, Zhu Q, Wang W, Feng J, Chen X. A dual color fluorescent biosensing platform based on WS2 nanosheet for detection of Hg2+ and Ag+. Biosens Bioelectron. 2016;85:464–70.

    Article  CAS  Google Scholar 

  38. Gu W, Pei XY, Cheng YX, Zhang CL, Zhang JD, Yan YH, Ding CP, Xian YZ. Black phosphorus quantum dots as the ratiometric fluorescence probe for trace mercury ion detection based on inner filter effect. ACS Sensors. 2017;2:576–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from Key Research and Development Program of Zhejiang Province (2020C02024, 2021C02061), the Public Projects of Zhejiang Province (LGC20C200004), National Natural Science Foundation of China (Grant No. 21806168), Natural Science Foundation of Anhui Province (2008085QB69), and Scientific Research Foundation for High-Level Talents of West Anhui University (WGKQ2021001).

Author information

Authors and Affiliations

Authors

Contributions

J.P.W. and W.W. contributed equally. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Linlin Yang or Zihong Ye.

Ethics declarations

Ethics approval

All experiments in situ were carried out in accordance with the Ethical Committee Approval of China. The study protocol was approved by the Animal Care and Use Committee of China Jiliang University. We took great efforts to reduce the number of animals used in these studies and to reduce animal suffering from pain and discomfort.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary data to this article can be found on the website.

Supplementary file1 (DOCX 3533 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, W., Yang, L. et al. Surface engineered bimetallic gold/silver nanoclusters for in situ imaging of mercury ions in living organisms. Anal Bioanal Chem 414, 4235–4244 (2022). https://doi.org/10.1007/s00216-022-04076-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04076-6

Keywords

Navigation