DeGraff BA, Demas JN. Luminescence-based oxygen sensors. In: Geddes CD, Lakowicz JR, editors. Reviews in fluorescence 2005, vol. 2005, Boston, MA: Springer US; 2005, p. 125–51. https://doi.org/10.1007/0-387-23690-2_6.
Wang X, Wolfbeis OS. Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev. 2014;43:3666–761. https://doi.org/10.1039/C4CS00039K.
CAS
Article
PubMed
Google Scholar
Moßhammer M, Strobl M, Kühl M, Klimant I, Borisov SM, Koren K. Design and application of an optical sensor for simultaneous imaging of pH and dissolved O2 with low cross-talk. ACS Sensors. 2016;1:681–7. https://doi.org/10.1021/acssensors.6b00071.
CAS
Article
Google Scholar
Koop-Jakobsen K, Mueller P, Meier RJ, Liebsch G, Jensen K. Plant-sediment interactions in salt marshes—an optode imaging study of O2, pH, and CO2 gradients in the rhizosphere. Frontiers in Plant Science 2018;9. https://doi.org/10.3389/fpls.2018.00541.
Nielsen SD, Paegle I, Borisov SM, Kjeldsen KU, Røy H, Skibsted J, et al. Optical sensing of pH and O2 in the evaluation of bioactive self-healing cement. ACS Omega. 2019;4:20237–43. https://doi.org/10.1021/acsomega.9b02541.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wolfbeis OS. Luminescent sensing and imaging of oxygen: fierce competition to the Clark electrode. BioEssays. 2015;37:921–8. https://doi.org/10.1002/bies.201500002.
CAS
Article
PubMed
PubMed Central
Google Scholar
Quaranta M, Borisov SM, Klimant I. Indicators for optical oxygen sensors. Bioanal Rev. 2012;4:115–57. https://doi.org/10.1007/s12566-012-0032-y.
Article
PubMed
PubMed Central
Google Scholar
Schweitzer C, Schmidt R. Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev. 2003;103:1685–758. https://doi.org/10.1021/cr010371d.
CAS
Article
PubMed
Google Scholar
Borisov SM. CHAPTER 1. Fundamentals of quenched phosphorescence O2 sensing and rational design of sensor materials. In: Papkovsky DB, Dmitriev RI, editors. Detection Science, Cambridge: Royal Society of Chemistry; 2018, p. 1–18. https://doi.org/10.1039/9781788013451-00001.
Valeur B, Wiley InterScience (Online service). Molecular fluorescence: principles and applications. New York: Wiley-VCH; 2001.
Lakowicz JR. Principles of fluorescence spectroscopy. 3rd ed. New York: Springer; 2006.
Book
Google Scholar
McDonagh C, Bowe P, Mongey K, MacCraith BD. Characterisation of porosity and sensor response times of sol–gel-derived thin films for oxygen sensor applications. J Non Cryst Solids. 2002;306:138–48. https://doi.org/10.1016/S0022-3093(02)01154-7.
CAS
Article
Google Scholar
Han B-H, Manners I, Winnik MA. Oxygen sensors based on mesoporous silica particles on layer-by-layer self-assembled films. Chem Mater. 2005;17:3160–71. https://doi.org/10.1021/cm047770k.
CAS
Article
Google Scholar
Djurovich PI, Murphy D, Thompson ME, Hernandez B, Gao R, Hunt PL, et al. Cyclometalated iridium and platinum complexes as singlet oxygen photosensitizers: quantum yields, quenching rates and correlation with electronic structures. Dalton Trans 2007:3763. https://doi.org/10.1039/b704595f.
Lehrer S. Solute perturbation of protein fluorescence. Quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 1971;10:3254–63. https://doi.org/10.1021/bi00793a015.
Carraway ER, Demas JN, DeGraff BA. Photophysics and oxygen quenching of transition-metal complexes on fumed silica. Langmuir. 1991;7:2991–8. https://doi.org/10.1021/la00060a015.
CAS
Article
Google Scholar
Okada T, Yoshido S, Miura H, Yamakami T, Sakai T, Mishima S. Swellable microsphere of a layered silicate produced by using monodispersed silica particles. J Phys Chem C. 2012;116:21864–9. https://doi.org/10.1021/jp307108t.
CAS
Article
Google Scholar
Kruk M, Jaroniec M, Sakamoto Y, Terasaki O, Ryoo R, Ko CH. Determination of pore size and pore wall structure of MCM-41 by using nitrogen adsorption, transmission electron microscopy, and X-ray diffraction. J Phys Chem B. 2000;104:292–301. https://doi.org/10.1021/jp992718a.
CAS
Article
Google Scholar
Koren K, Borisov SM, Klimant I. Stable optical oxygen sensing materials based on click-coupling of fluorinated platinum(II) and palladium(II) porphyrins—a convenient way to eliminate dye migration and leaching. Sens Actuators B Chem. 2012;169:173–81. https://doi.org/10.1016/j.snb.2012.04.062.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yun S, Luo H, Gao Y. Superhydrophobic silica aerogel microspheres from methyltrimethoxysilane: rapid synthesis via ambient pressure drying and excellent absorption properties. RSC Adv. 2014;4:4535–42. https://doi.org/10.1039/C3RA46911E.
CAS
Article
Google Scholar
Kautsky H. Quenching of luminescence by oxygen. Trans Faraday Soc. 1939;35:216. https://doi.org/10.1039/tf9393500216.
CAS
Article
Google Scholar
Twarowski AJ, Good Lisa. Phosphorescence quenching by molecular oxygen: zinc tetraphenylporphin on solid supports. J Phys Chem 1987;91:5252–7. https://doi.org/10.1021/j100304a024.
Wolfbeis OS, Leiner MJP, Posch HE. A new sensing material for optical oxygen measurement, with the indicator embedded in an aqueous phase. Mikrochim Acta. 1986;90:359–66. https://doi.org/10.1007/BF01199278.
Article
Google Scholar
Krasnansky R, Koike K, Thomas JK. Gaussian approximation to the unique heterogeneous Langmuir-Hinshelwood type fluorescence quenching at the silica gel gas/solid interface: pyrene and 9,10-diphenylanthracene singlet quenching by oxygen. J Phys Chem. 1990;94:4521–8. https://doi.org/10.1021/j100374a033.
CAS
Article
Google Scholar
Hartmann P, Leiner MJP, Lippitsch ME. Response characteristics of luminescent oxygen sensors. Sens Actuators B Chem. 1995;29:251–7. https://doi.org/10.1016/0925-4005(95)01691-0.
CAS
Article
Google Scholar
Posch HE, Wolfbeis OS. Optical sensors, 13: fibre-optic humidity sensor based on fluorescence quenching. Sens Actuators. 1988;15:77–83. https://doi.org/10.1016/0250-6874(88)85019-4.
CAS
Article
Google Scholar
He H, Fraatz RJ, Leiner MJP, Rehn MM, Tusa JK. Selection of silicone polymer matrix for optical gas sensing. Sens Actuators B Chem. 1995;29:246–50. https://doi.org/10.1016/0925-4005(95)01690-2.
CAS
Article
Google Scholar
Klimant I, Belser P, Wolfbeis OS. Novel metal—organic ruthenium(II) diimin complexes for use as longwave excitable luminescent oxygen probes. Talanta. 1994;41:985–91. https://doi.org/10.1016/0039-9140(94)E0051-R.
CAS
Article
PubMed
Google Scholar
Mingoarranz et al. FJ, Moreno-Bondi MC, García-Fresnadillo D, de Dios C, Orellana G. Oxygen-sensitive layers for optical fibre devices. Mikrochim Acta 1995;121:107–18. https://doi.org/10.1007/BF01248245.
Koren K, Borisov SM, Saf R, Klimant I. Strongly phosphorescent iridium(III)-porphyrins—new oxygen indicators with tuneable photophysical properties and functionalities. Eur J Inorg Chem. 2011;2011:1531–4. https://doi.org/10.1002/ejic.201100089.
CAS
Article
PubMed
PubMed Central
Google Scholar
Badia R, Marta E. Diaz-Garcia, Garcia-Fresnadillo A. A sensitive probe for oxygen sensing in gas mixtures, based on room-temperature phosphorescence quenching. Mikrochim Acta 1995;121:51–61. https://doi.org/10.1007/BF01248240.
Borisov SM, Lehner P, Klimant I. Novel optical trace oxygen sensors based on platinum(II) and palladium(II) complexes with 5,10,15,20-meso-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin covalently immobilized on silica-gel particles. Anal Chim Acta. 2011;690:108–15. https://doi.org/10.1016/j.aca.2011.01.057.
CAS
Article
PubMed
Google Scholar
Melnikov PV, Naumova AO, Alexandrovskaya AYu, Zaitsev NK. Optimizing production conditions for a composite optical oxygen sensor using mesoporous SiO2. Nanotechnol Russia 2018;13:602–8. https://doi.org/10.1134/S1995078018060083.
Xu H, Aylott JW, Kopelman R, Miller TJ, Philbert MA. A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol−gel-based spherical optical nanosensors with applications to rat C6 glioma. Anal Chem. 2001;73:4124–33. https://doi.org/10.1021/ac0102718.
CAS
Article
PubMed
Google Scholar
Lei B, Li B, Zhang H, Lu S, Zheng Z, Li W, et al. Mesostructured silica chemically doped with RuII as a superior optical oxygen sensor. Adv Funct Mater. 2006;16:1883–91. https://doi.org/10.1002/adfm.200500737.
CAS
Article
Google Scholar
Lei B, Li B, Zhang H, Zhang L, Li W. Synthesis, characterization, and oxygen sensing properties of functionalized mesoporous SBA-15 and MCM-41 with a covalently linked ruthenium(II) complex. J Phys Chem C. 2007;111:11291–301. https://doi.org/10.1021/jp070008w.
CAS
Article
Google Scholar
Wu X, Song L, Li B, Liu Y. Synthesis, characterization, and oxygen sensing properties of Ru(II) complex covalently grafted to mesoporous MCM-41. J Lumin. 2010;130:374–9. https://doi.org/10.1016/j.jlumin.2009.09.023.
CAS
Article
Google Scholar
Zhang H, Sun Y, Ye K, Zhang P, Wang Y. Oxygen sensing materials based on mesoporous silica MCM-41 and Pt(ii)–porphyrin complexes. J Mater Chem. 2005;15:3181. https://doi.org/10.1039/b503336e.
CAS
Article
Google Scholar
Wang B, Liu Y, Li B, Yue S, Li W. Optical oxygen sensing materials based on trinuclear starburst ruthenium(II) complexes assembled in mesoporous silica. J Lumin. 2008;128:341–7. https://doi.org/10.1016/j.jlumin.2007.08.011.
CAS
Article
Google Scholar
Shi L, Li B. A series of Cu(I) complexes containing 1,10-phenanthroline derivative ligands: synthesis, characterization, photophysical, and oxygen-sensing properties. Eur J Inorg Chem. 2009;2009:2294–302. https://doi.org/10.1002/ejic.200900123.
CAS
Article
Google Scholar
Liu Y, Li B, Cong Y, Zhang L, Fan D, Shi L. Optical oxygen sensing materials based on a novel dirhenium(I) complex assembled in mesoporous silica. J Lumin. 2011;131:781–5. https://doi.org/10.1016/j.jlumin.2010.12.003.
CAS
Article
Google Scholar
Haitao J, Huilin Y, Fan L, Yang L. Fabrication and performances of an optical sensor system constructed by a novel Cu(I) complex embedded on silica matrix. J Lumin. 2012;132:198–204. https://doi.org/10.1016/j.jlumin.2011.08.023.
CAS
Article
Google Scholar
Wang B, Zhang L, Li B, Li Y, Shi Y, Shi T. Synthesis, characterization, and oxygen sensing properties of functionalized mesoporous silica SBA-15 and MCM-41 with a Pt(II)–porphyrin complex. Sens Actuators B Chem. 2014;190:93–100. https://doi.org/10.1016/j.snb.2013.08.036.
CAS
Article
Google Scholar
Lobnik A, Korent Urek Š, Turel M, Frančič N. Sol-gel based optical chemical sensors. In: Proc. SPIE 8073, Optical Sensors 2011; and Photonic Crystal Fibers V, 80730V. https://doi.org/10.1117/12.886819.
MacCraith BD, McDonagh CM, O’Keeffe G, Keyes ET, Vos JG, O’Kelly B, et al. Fibre optic oxygen sensor based on fluorescence quenching of evanescent-wave excited ruthenium complexes in sol–gel derived porous coatings. Analyst. 1993;118:385–8. https://doi.org/10.1039/AN9931800385.
CAS
Article
Google Scholar
McEvoy AK, McDonagh CM, MacCraith BD. Dissolved oxygen sensor based on fluorescence quenching of oxygen-sensitive ruthenium complexes immobilized in sol–gel-derived porous silica coatings. Analyst. 1996;121:785–8. https://doi.org/10.1039/AN9962100785.
CAS
Article
Google Scholar
Mcevoy AK, Mcdonagh C, Maccraith BD. Optimisation of sol-gel-derived silica films for optical oxygen sensing. J Sol-Gel Sci Technol. 1997;8:1121–5. https://doi.org/10.1007/BF02436994.
CAS
Article
Google Scholar
Lee S-K, Okura I. Porphyrin-doped sol-gel glass as a probe for oxygen sensing. Anal Chim Acta. 1997;342:181–8. https://doi.org/10.1016/S0003-2670(96)00562-4.
CAS
Article
Google Scholar
Lee S-K, Okura I. Optical sensor for oxygen using a porphyrin-doped sol–gel glass. Analyst. 1997;122:81–4. https://doi.org/10.1039/a604885d.
CAS
Article
Google Scholar
McDonagh C, MacCraith BD, McEvoy AK. Tailoring of sol−gel films for optical sensing of oxygen in gas and aqueous phase. Anal Chem. 1998;70:45–50. https://doi.org/10.1021/ac970461b.
CAS
Article
PubMed
Google Scholar
Murtagh MT, Shahriari MR, Krihak M. A study of the effects of organic modification and processing technique on the luminescence quenching behavior of sol−gel oxygen sensors based on a Ru(II) complex. Chem Mater. 1998;10:3862–9. https://doi.org/10.1021/cm9802806.
CAS
Article
Google Scholar
Tao Z, Tehan EC, Tang Y, Bright FV. Stable sensors with tunable sensitivities based on class II xerogels. Anal Chem. 2006;78:1939–45. https://doi.org/10.1021/ac051657b.
CAS
Article
PubMed
Google Scholar
Tang Y, Tehan EC, Tao Z, Bright FV. Sol−gel-derived sensor materials that yield linear calibration plots, high sensitivity, and long-term stability. Anal Chem. 2003;75:2407–13. https://doi.org/10.1021/ac030087h.
CAS
Article
PubMed
Google Scholar
Yeh T-S, Chu C-S, Lo Y-L. Highly sensitive optical fiber oxygen sensor using Pt(II) complex embedded in sol–gel matrices. Sens Actuators B Chem. 2006;119:701–7. https://doi.org/10.1016/j.snb.2006.01.051.
CAS
Article
Google Scholar
Amao Y, Asai K, Miyashita T, Okura I. Novel optical oxygen sensing material: platinum porphyrin-fluoropolymer film. Polym Adv Technol. 2000;11:705–9. https://doi.org/10.1002/1099-1581(200008/12)11:8/12%3c705::AID-PAT23%3e3.0.CO;2-L.
CAS
Article
Google Scholar
Amao Y, Miyashita T, Okura I. Optical oxygen sensing based on the luminescence change of metalloporphyrins immobilized in styrene–pentafluorostyrene copolymer film. Analyst. 2000;125:871–5. https://doi.org/10.1039/b000702l.
CAS
Article
Google Scholar
Amao Y, Ishikawa Y, Okura I. Green luminescent iridium(III) complex immobilized in fluoropolymer film as optical oxygen-sensing material. Anal Chim Acta. 2001;445:177–82. https://doi.org/10.1016/S0003-2670(01)01254-5.
CAS
Article
Google Scholar
Lehner P, Larndorfer C, Garcia-Robledo E, Larsen M, Borisov SM, Revsbech N-P, et al. LUMOS—a sensitive and reliable optode system for measuring dissolved oxygen in the nanomolar range. PLoS ONE. 2015;10: e0128125. https://doi.org/10.1371/journal.pone.0128125.
CAS
Article
PubMed
PubMed Central
Google Scholar
Higgins C, Wencel D, Burke CS, MacCraith BD, McDonagh C. Novel hybrid optical sensor materials for in-breath O2 analysis. Analyst. 2008;133:241–7. https://doi.org/10.1039/B716197B.
CAS
Article
PubMed
Google Scholar
Estella J, Wencel D, Moore JP, Sourdaine M, McDonagh C. Fabrication and performance evaluation of highly sensitive hybrid sol–gel-derived oxygen sensor films based on a fluorinated precursor. Anal Chim Acta. 2010;666:83–90. https://doi.org/10.1016/j.aca.2010.03.053.
CAS
Article
PubMed
Google Scholar
Bukowski RM, Ciriminna R, Pagliaro M, Bright FV. High-performance quenchometric oxygen sensors based on fluorinated xerogels doped with [Ru(dpp) 3 ] 2+. Anal Chem. 2005;77:2670–2. https://doi.org/10.1021/ac048199b.
CAS
Article
PubMed
Google Scholar
Bukowski RM, Davenport MD, Titus AH, Bright FV. O2-responsive chemical sensors based on hybrid xerogels that contain fluorinated precursors. Appl Spectrosc. 2006;60:951–7. https://doi.org/10.1366/000370206778397489.
CAS
Article
PubMed
Google Scholar
Chu C-S, Lo Y-L. High-performance fiber-optic oxygen sensors based on fluorinated xerogels doped with Pt(II) complexes. Sens Actuators B Chem. 2007;124:376–82. https://doi.org/10.1016/j.snb.2006.12.049.
CAS
Article
Google Scholar
Chu C-S, Lo Y-L. Highly sensitive and linear calibration optical fiber oxygen sensor based on Pt(II) complex embedded in sol–gel matrix. Sens Actuators B Chem. 2011;155:53–7. https://doi.org/10.1016/j.snb.2010.11.023.
CAS
Article
Google Scholar
Ciriminna R, Pagliaro M. Organofluoro-silica xerogels as high-performance optical oxygen sensors. Analyst. 2009;134:1531. https://doi.org/10.1039/b819417c.
CAS
Article
PubMed
Google Scholar
Leventis N, Elder IA, Rolison DR, Anderson ML, Merzbacher CI. Durable modification of silica aerogel monoliths with fluorescent 2,7-diazapyrenium moieties. Sensing oxygen near the speed of open-air diffusion. Chem Mater 1999;11:2837–45. https://doi.org/10.1021/cm9901966.
Leventis N, Rawashdeh A-MM, Elder IA, Yang J, Dass A, Sotiriou-Leventis C. Synthesis and characterization of Ru(II) Tris(1,10-phenanthroline)-electron acceptor dyads incorporating the 4-benzoyl-N-methylpyridinium cation or N-benzyl-N-methyl viologen. Improving the dynamic range, sensitivity, and response time of sol−gel-based optical oxygen sensors. Chem Mater 2004;16:1493–506. https://doi.org/10.1021/cm034999b.
Plata DL, Briones YJ, Wolfe RL, Carroll MK, Bakrania SD, Mandel SG, et al. Aerogel-platform optical sensors for oxygen gas. J Non Cryst Solids. 2004;350:326–35. https://doi.org/10.1016/j.jnoncrysol.2004.06.046.
CAS
Article
Google Scholar
Imran M, Motta N, Shafiei M. Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials. Beilstein J Nanotechnol. 2018;9:2128–70. https://doi.org/10.3762/bjnano.9.202.
CAS
Article
PubMed
PubMed Central
Google Scholar
Rivero P, Goicoechea J, Arregui F. Optical fiber sensors based on polymeric sensitive coatings. Polymers. 2018;10:280. https://doi.org/10.3390/polym10030280.
CAS
Article
PubMed Central
Google Scholar
George G, Luo Z. A review on electrospun luminescent nanofibers: photoluminescence characteristics and potential applications. CNANO. 2020;16:321–62. https://doi.org/10.2174/1573413715666190112121113.
CAS
Article
Google Scholar
Wang Y, Li B, Liu Y, Zhang L, Zuo Q, Shi L, et al. Highly sensitive oxygen sensors based on Cu(i) complex–polystyrene composite nanofibrous membranes prepared by electrospinning. Chem Commun 2009:5868. https://doi.org/10.1039/b910305h.
Wang L-Y, Xu Y, Lin Z, Zhao N, Xu Y. Electrospinning fabrication and oxygen sensing properties of Cu(I) complex–polystyrene composite microfibrous membranes. JLumin. 2011;131:1277–82. https://doi.org/10.1016/j.jlumin.2011.03.017.
CAS
Article
Google Scholar
Wang Y, Li B, Zhang L, Zuo Q, Li P, Zhang J, et al. High-performance oxygen sensors based on EuIII complex/polystyrene composite nanofibrous membranes prepared by electrospinning. ChemPhysChem. 2011;12:349–55. https://doi.org/10.1002/cphc.201000884.
CAS
Article
PubMed
Google Scholar
Yingkui L. High performance oxygen sensing nanofibrous membranes of Eu(III) complex/polystyrene prepared by electrospinning. Spectrochim Acta Part A Mol Biomol Spectrosc. 2011;79:356–60. https://doi.org/10.1016/j.saa.2011.03.012.
CAS
Article
Google Scholar
Wolf C, Tscherner M, Köstler S, Ribitsch V. Optochemical sensors based on polymer nanofibers with ultra-fast response characteristics. IEEE SENSORS. 2014;2014:950–3. https://doi.org/10.1109/ICSENS.2014.6985159.
Article
Google Scholar
Wolf C, Tscherner M, Köstler S. Ultra-fast opto-chemical sensors by using electrospun nanofibers as sensing layers. Sens Actuators B Chem. 2015;209:1064–9. https://doi.org/10.1016/j.snb.2014.11.070.
CAS
Article
Google Scholar
Kai R, Jun W, Huali J. Electrospinning fibrous films doped with iridium complexes for high performance oxygen sensing: synthesis and characterization. Sens Actuators B Chem. 2017;240:697–708. https://doi.org/10.1016/j.snb.2016.09.033.
CAS
Article
Google Scholar
Lee S-K, Okura I. Photoluminescent determination of oxygen using metalloporphyrin-polymer sensing systems. Spectrochim Acta Part A Mol Biomol Spectrosc. 1998;54:91–100. https://doi.org/10.1016/S1386-1425(97)00206-0.
Article
Google Scholar
Borisov SM, Zenkl G, Klimant I. Phosphorescent platinum(II) and palladium(II) complexes with azatetrabenzoporphyrins—new red laser diode-compatible indicators for optical oxygen sensing. ACS Appl Mater Interfaces. 2010;2:366–74. https://doi.org/10.1021/am900932z.
CAS
Article
PubMed
PubMed Central
Google Scholar
Payne SJ, Fiore GL, Fraser CL, Demas JN. Luminescence oxygen sensor based on a ruthenium(II) star polymer complex. Anal Chem. 2010;82:917–21. https://doi.org/10.1021/ac9020837.
CAS
Article
PubMed
Google Scholar
Tian Y, Shumway BR, Gao W, Youngbull C, Holl MR, Johnson RH, et al. Influence of matrices on oxygen sensing of three sensing films with chemically conjugated platinum porphyrin probes and preliminary application for monitoring of oxygen consumption of Escherichia coli (E. coli). Sens Actuators B Chem 2010;150:579–87. https://doi.org/10.1016/j.snb.2010.08.036.
Koren K, Hutter L, Enko B, Pein A, Borisov SM, Klimant I. Tuning the dynamic range and sensitivity of optical oxygen-sensors by employing differently substituted polystyrene-derivatives. Sens Actuators B Chem. 2013;176:344–50. https://doi.org/10.1016/j.snb.2012.09.057.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee S, Park J-W. Luminescent oxygen sensors with highly improved sensitivity based on a porous sensing film with increased oxygen accessibility and photoluminescence. Sens Actuators B Chem. 2017;249:364–77. https://doi.org/10.1016/j.snb.2017.04.112.
CAS
Article
Google Scholar
Yang X, Li L, Yuan L, Li S, Luo S, Liu Y, et al. Submicrometer organic silica gel fiber for oxygen sensing. Opt Lett. 2011;36:4656. https://doi.org/10.1364/OL.36.004656.
CAS
Article
PubMed
Google Scholar
Xue R, Behera P, Viapiano MS, Lannutti JJ. Rapid response oxygen-sensing nanofibers. Mat Sci and Eng C. 2013;33:3450–7. https://doi.org/10.1016/j.msec.2013.04.030.
CAS
Article
Google Scholar
Xue R, Behera P, Xu J, Viapiano MS, Lannutti JJ. Polydimethylsiloxane core–polycaprolactone shell nanofibers as biocompatible, real-time oxygen sensors. Sens Actuators B Chem. 2014;192:697–707. https://doi.org/10.1016/j.snb.2013.10.084.
CAS
Article
PubMed
PubMed Central
Google Scholar
Presley K, Hwang J, Cheong S, Tilley R, Collins J, Viapiano M, et al. Nanoscale upconversion for oxygen sensing. Mat Sci and Eng C. 2017;70:76–84. https://doi.org/10.1016/j.msec.2016.08.056.
CAS
Article
Google Scholar
Akram M, Mei Z, Shi J, Wen J, Khalid H, Jiang J, et al. Electrospun nanofibers and spin coated films prepared from side-chain copolymers with chemically bounded platinum (II) porphyrin moieties for oxygen sensing and pressure sensitive paints. Talanta. 2018;188:124–34. https://doi.org/10.1016/j.talanta.2018.05.067.
CAS
Article
PubMed
Google Scholar
Rowsell JLC, Yaghi OM. Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 2004;73:3–14. https://doi.org/10.1016/j.micromeso.2004.03.034.
CAS
Article
Google Scholar
Lu W, Wei Z, Gu Z-Y, Liu T-F, Park J, Park J, et al. Tuning the structure and function of metal–organic frameworks via linker design. Chem Soc Rev. 2014;43:5561–93. https://doi.org/10.1039/C4CS00003J.
CAS
Article
PubMed
Google Scholar
Zhang Y, Yuan S, Day G, Wang X, Yang X, Zhou H-C. Luminescent sensors based on metal-organic frameworks. Coord Chem Rev. 2018;354:28–45. https://doi.org/10.1016/j.ccr.2017.06.007.
CAS
Article
Google Scholar
Ni J, Wei K-J, Min Y, Chen Y, Zhan S, Li D, et al. Copper(i) coordination polymers of 2,2′-dipyridylamine derivatives: syntheses, structures, and luminescence. Dalton Trans. 2012;41:5280. https://doi.org/10.1039/c2dt12032a.
CAS
Article
PubMed
Google Scholar
Tang Y-Y, Ding C-X, Ng S-W, Xie Y-S. Syntheses, structures and photoluminescence of Zn(ii), Ag(i), Cu(i) and Co(ii) coordination polymers of a tetrapyridyl ligand. RSC Adv. 2013;3:18134. https://doi.org/10.1039/c3ra43405b.
CAS
Article
Google Scholar
Cui Y, Chen B, Qian G. Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord Chem Rev. 2014;273–274:76–86. https://doi.org/10.1016/j.ccr.2013.10.023.
CAS
Article
Google Scholar
Dou Z, Yu J, Cui Y, Yang Y, Wang Z, Yang D, et al. Luminescent metal–organic framework films as highly sensitive and fast-response oxygen sensors. J Am Chem Soc. 2014;136:5527–30. https://doi.org/10.1021/ja411224j.
CAS
Article
PubMed
Google Scholar
Burger T, Winkler C, Dalfen I, Slugovc C, Borisov SM. Porphyrin based metal–organic frameworks: highly sensitive materials for optical sensing of oxygen in gas phase. J Mater Chem C 2021:10.1039.D1TC03735H. https://doi.org/10.1039/D1TC03735H.
Xie Z, Ma L, deKrafft KE, Jin A, Lin W. Porous phosphorescent coordination polymers for oxygen sensing. J Am Chem Soc. 2010;132:922–3. https://doi.org/10.1021/ja909629f.
CAS
Article
PubMed
Google Scholar
Barrett SM, Wang C, Lin W. Oxygen sensing via phosphorescence quenching of doped metal–organic frameworks. J Mater Chem. 2012;22:10329. https://doi.org/10.1039/c2jm15549d.
CAS
Article
Google Scholar
Ho M-L, Chen Y-A, Chen T-C, Chang P-J, Yu Y-P, Cheng K-Y, et al. Synthesis, structure and oxygen-sensing properties of Iridium(iii)-containing coordination polymers with different cations. Dalton Trans. 2012;41:2592. https://doi.org/10.1039/c2dt11473a.
CAS
Article
PubMed
Google Scholar
Qi X-L, Liu S-Y, Lin R-B, Liao P-Q, Ye J-W, Lai Z, et al. Phosphorescence doping in a flexible ultramicroporous framework for high and tunable oxygen sensing efficiency. ChemComm. 2013;49:6864. https://doi.org/10.1039/c3cc43461c.
CAS
Article
Google Scholar
Chen Y-T, Lin C-Y, Lee G-H, Ho M-L. Four new lead(II)–iridium(II) heterobimetallic coordination frameworks: synthesis, structures, luminescence and oxygen-sensing properties. CrystEngComm. 2015;17:2129–40. https://doi.org/10.1039/C4CE02457E.
CAS
Article
Google Scholar
Ye J-W, Lin J-M, Mo Z-W, He C-T, Zhou H-L, Zhang J-P, et al. Mixed-lanthanide porous coordination polymers showing range-tunable ratiometric luminescence for O2 sensing. Inorg Chem. 2017;56:4238–43. https://doi.org/10.1021/acs.inorgchem.7b00252.
CAS
Article
PubMed
Google Scholar
Lin R-B, Li F, Liu S-Y, Qi X-L, Zhang J-P, Chen X-M. A noble-metal-free porous coordination framework with exceptional sensing efficiency for oxygen. Angew Chem. 2013;125:13671–5. https://doi.org/10.1002/ange.201307217.
Article
Google Scholar
Ye J-W, Zhou H-L, Liu S-Y, Cheng X-N, Lin R-B, Qi X-L, et al. Encapsulating pyrene in a metal–organic zeolite for optical sensing of molecular oxygen. Chem Mater. 2015;27:8255–60. https://doi.org/10.1021/acs.chemmater.5b03955.
CAS
Article
Google Scholar
Lin R-B, Zhou H-L, He C-T, Zhang J-P, Chen X-M. Tuning oxygen-sensing behaviour of a porous coordination framework by a guest fluorophore. Inorg Chem Front. 2015;2:1085–90. https://doi.org/10.1039/C5QI00157A.
CAS
Article
Google Scholar
Zhao Z, Ru J, Zhou P, Wang Y, Shan C, Yang X, et al. A smart nanoprobe based on a gadolinium complex encapsulated by ZIF-8 with enhanced room temperature phosphorescence for synchronous oxygen sensing and photodynamic therapy. Dalton Trans. 2019;48:16952–60. https://doi.org/10.1039/C9DT03955D.
CAS
Article
PubMed
Google Scholar
Knedel T-O, Buss S, Maisuls I, Daniliuc CG, Schlüsener C, Brandt P, et al. Encapsulation of phosphorescent Pt(II) complexes in Zn-based metal–organic frameworks toward oxygen-sensing porous materials. Inorg Chem. 2020;59:7252–64. https://doi.org/10.1021/acs.inorgchem.0c00678.
CAS
Article
PubMed
Google Scholar
Xie J, Chen X, Li H, Chen Z. On bio-MOF materials doped with phosphorescent iridium complexes for molecular oxygen determination: synthesis, characterization and performance. Spectrochim Acta A Mol Biomol Spectrosc. 2021;261: 120041. https://doi.org/10.1016/j.saa.2021.120041.
CAS
Article
PubMed
Google Scholar
Dong X-Y, Si Y, Yang J-S, Zhang C, Han Z, Luo P, et al. Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based metal-organic framework. Nat Commun. 2020;11:3678. https://doi.org/10.1038/s41467-020-17200-w.
CAS
Article
PubMed
PubMed Central
Google Scholar
Xia T, Jiang L, Zhang J, Wan Y, Yang Y, Gan J, et al. A fluorometric metal-organic framework oxygen sensor: from sensitive powder to portable optical fiber device. Microporous Mesoporous Mater. 2020;305: 110396. https://doi.org/10.1016/j.micromeso.2020.110396.
CAS
Article
Google Scholar
Xu X-Y, Yan B. Nanoscale LnMOF-functionalized nonwoven fibers protected by a polydimethylsiloxane coating layer as a highly sensitive ratiometric oxygen sensor. J Mater Chem C. 2016;4:8514–21. https://doi.org/10.1039/C6TC02569B.
CAS
Article
Google Scholar
Liu S-Y, Qi X-L, Lin R-B, Cheng X-N, Liao P-Q, Zhang J-P, et al. Porous Cu(I) triazolate framework and derived hybrid membrane with exceptionally high sensing efficiency for gaseous oxygen. Adv Funct Mater. 2014;24:5866–72. https://doi.org/10.1002/adfm.201401125.
CAS
Article
Google Scholar
Feng D, Chung W-C, Wei Z, Gu Z-Y, Jiang H-L, Chen Y-P, et al. Construction of ultrastable porphyrin Zr metal–organic frameworks through linker elimination. J Am Chem Soc. 2013;135:17105–10. https://doi.org/10.1021/ja408084j.
CAS
Article
PubMed
Google Scholar
Yang J, Wang Z, Li Y, Zhuang Q, Gu J. Real-time monitoring of dissolved oxygen with inherent oxygen-sensitive centers in metal–organic frameworks. Chem Mater. 2016;28:2652–8. https://doi.org/10.1021/acs.chemmater.6b00016.
CAS
Article
Google Scholar
Lan G, Ni K, You E, Wang M, Culbert A, Jiang X, et al. Multifunctional nanoscale metal–organic layers for ratiometric pH and oxygen sensing. J Am Chem Soc. 2019;141:18964–9. https://doi.org/10.1021/jacs.9b11024.
CAS
Article
PubMed
Google Scholar
Vander Donckt E, Camerman B, Hendrick F, Heme R, Vandeloise R. Polystyrene immobilized Ir(III) complex as a new material for optical oxygen sensing. Bull Soc Chim Belges. 1994;103:207–11. https://doi.org/10.1002/bscb.19941030507.
CAS
Article
Google Scholar
Mao Y, Mei Z, Wen J, Li G, Tian Y, Zhou B, et al. Honeycomb structured porous films from a platinum porphyrin-grafted poly(styrene-co-4-vinylpyridine) copolymer as an optical oxygen sensor. Sens Actuators B Chem. 2018;257:944–53. https://doi.org/10.1016/j.snb.2017.11.042.
CAS
Article
Google Scholar
Mao Y, Zhao Q, Pan T, Shi J, Jiang S, Chen M, et al. Platinum porphyrin/3-(trimethoxysily)propylmethacrylate functionalized flexible PDMS micropillar arrays as optical oxygen sensors. New J Chem. 2017;41:5429–35. https://doi.org/10.1039/C7NJ01187C.
CAS
Article
Google Scholar
Banerjee S, Arzhakova OV, Dolgova AA, Papkovsky DB. Phosphorescent oxygen sensors produced from polyolefin fibres by solvent-crazing method. Sens Actuators B Chem. 2016;230:434–41. https://doi.org/10.1016/j.snb.2016.02.062.
CAS
Article
Google Scholar
McKeown NB, Budd PM. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev. 2006;35:675. https://doi.org/10.1039/b600349d.
CAS
Article
PubMed
Google Scholar
Low Z-X, Budd PM, McKeown NB, Patterson DA. Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers. Chem Rev. 2018;118:5871–911. https://doi.org/10.1021/acs.chemrev.7b00629.
CAS
Article
PubMed
Google Scholar
Kameda M, Tezuka N, Hangai T, Asai K, Nakakita K, Amao Y. Adsorptive pressure-sensitive coatings on porous anodized aluminium. Meas Sci Technol. 2004;15:489–500. https://doi.org/10.1088/0957-0233/15/3/001.
CAS
Article
Google Scholar
Araki N, Amao Y, Funabiki T, Kamitakahara M, Ohtsuki C, Mitsuo K, et al. Optical oxygen-sensing properties of porphyrin derivatives anchored on ordered porous aluminium oxide plates. Photochem Photobiol Sci. 2007;6:794. https://doi.org/10.1039/b618030b.
CAS
Article
PubMed
Google Scholar
Baron AE, Danielson JDS, Gouterman M, Wan JR, Callis JB, McLachlan B. Submillisecond response times of oxygen-quenched luminescent coatings. Rev Sci Instrum. 1993;64:3394–402. https://doi.org/10.1063/1.1144310.
CAS
Article
Google Scholar
Amao Y, Miyakawa K, Okura I. Novel optical oxygen sensing device: a thin film of a palladium porphyrin with a long alkyl chain on an alumina plate. J Mater Chem. 2000;10:305–8. https://doi.org/10.1039/a906666g.
CAS
Article
Google Scholar
Amao Y, Okura I. An oxygen sensing system based on the phosphorescence quenching of metalloporphyrin thin film on alumina plates. Analyst. 2000;125:1601–4. https://doi.org/10.1039/b004065g.
CAS
Article
Google Scholar
Amao Y, Ishikawa Y, Okura I, Miyashita T. Optical oxygen sensing material: terbium(III) complex adsorbed thin film. Bull Chem Soc Jpn. 2001;74:2445–9. https://doi.org/10.1246/bcsj.74.2445.
CAS
Article
Google Scholar
Fernández-Sánchez JF, Cannas R, Spichiger S, Steiger R, Spichiger-Keller UE. Novel nanostructured materials to develop oxygen-sensitive films for optical sensors. Anal Chim Acta. 2006;566:271–82. https://doi.org/10.1016/j.aca.2006.03.021.
CAS
Article
Google Scholar
Marin-Suarezdel Toro M, Fernandez-Sanchez JF, Baranoff E, Nazeeruddin MdK, Graetzel M, Fernandez-Gutierrez A. Novel luminescent Ir(III) dyes for developing highly sensitive oxygen sensing films. Talanta 2010;82:620–6. https://doi.org/10.1016/j.talanta.2010.05.018.
McDonagh C, Kolle C, McEvoy AK, Dowling DL, Cafolla AA, Cullen SJ, et al. Phase fluorometric dissolved oxygen sensor. Sens Actuators B Chem. 2001;74:124–30. https://doi.org/10.1016/S0925-4005(00)00721-8.
CAS
Article
Google Scholar
Lehner P, Staudinger C, Borisov SM, Regensburger J, Klimant I. Intrinsic artefacts in optical oxygen sensors-how reliable are our measurements? Chem Eur J. 2015;21:3978–86. https://doi.org/10.1002/chem.201406037.
CAS
Article
PubMed
Google Scholar
Langsam M, Robeson LM. Substituted propyne polymers? part II. Effects of aging on the gas permeability properties of poly[1-(trimethylsilyl)propyne] for gas separation membranes. Polym Eng Sci 1989;29:44–54. https://doi.org/10.1002/pen.760290109.
Müller BJ, Burger T, Borisov SM, Klimant I. High performance optical trace oxygen sensors based on NIR-emitting benzoporphyrins covalently coupled to silicone matrixes. Sens Actuators B Chem. 2015;216:527–34. https://doi.org/10.1016/j.snb.2015.04.067.
CAS
Article
Google Scholar
Larsen M, Lehner P, Borisov SM, Klimant I, Fischer JP, Stewart FJ, et al. In situ quantification of ultra-low O2 concentrations in oxygen minimum zones: application of novel optodes: In situ trace sensing of O2 using novel optodes. Limnol Oceanogr Methods. 2016;14:784–800. https://doi.org/10.1002/lom3.10126.
Article
Google Scholar
Borisov SM, Klimant I. Ultrabright oxygen optodes based on cyclometalated iridium(III) coumarin complexes. Anal Chem. 2007;79:7501–9. https://doi.org/10.1021/ac0710836.
CAS
Article
PubMed
Google Scholar
Velasco-García N, Pereiro-García R, Diaz-García ME. Analytical and mechanistic aspects of the room temperature phosphorescence of Erythrosine B adsorbed on solid supports as oxygen sensing phases. Spectrochim Acta Part A Mol Biomol Spectrosc. 1995;51:895–904. https://doi.org/10.1016/0584-8539(94)00129-Y.
Article
Google Scholar