Skip to main content
Log in

A porous molecularly imprinted electrochemical sensor for specific determination of bisphenol S from human serum and bottled water samples in femtomolar level

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, a porous molecularly imprinted electrochemical sensor was successfully fabricated for the selective assay of bisphenol S (BPS) by introducing N-methacryloyl-l tyrosine functional monomer. The molecularly imprinted polymer (MIP)–based sensor (MA-Tyr@MIP/GCE) was prepared via photopolymerization on the glassy carbon electrode and subsequently characterized by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR). The analytical performance of the sensor was evaluated via CV and differential pulse voltammetry (DPV) measurements. Under the optimized conditions, the rebinding experiment demonstrated that the peak current of the porous MIP-based sensor obviously decreased with the increase of BPS concentration in the concentration range of 1–10 fM. Therefore, the detection limit was determined as 0.171 fM. It should be underlined that MA-Tyr@MIP/GCE exhibited high sensitivity and excellent selectivity because MA-TyrMA-Tyr@MIP/GCE sensor has a higher imprinting factor (IF) toward BPS in respect to competitive analogs, i.e., bisphenol A, bisphenol B, and bisphenol F. The practical application of the sensor also showed good reproducibility and stability for the detection of BPS in human serum and water samples. These results showed MA-Tyr@MIP/GCE successfully applied for the selective recognition of BPS in biological and water samples with high sensitivity and excellent selectivity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Frankowski R, Płatkiewicz J, Stanisz E, Grześkowiak T, Zgoła-Grześkowiak A. Biodegradation and photo-Fenton degradation of bisphenol A, bisphenol S and fluconazole in water. Environ Pollut. 2021;289.https://doi.org/10.1016/j.envpol.2021.117947.

  2. Liu D, Wu P, Zhao N, Nie S, Cui J, Zhao M, Jin H. Differences of bisphenol analogue concentrations in indoor dust between rural and urban areas. Chemosphere. 2021;276:130016. https://doi.org/10.1016/j.chemosphere.2021.130016.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Y, Lei Y, Lu H, Shi L, Wang P, Ali Z, Li J. Electrochemical detection of bisphenols in food: a review. Food Chem. 2021;346:128895. https://doi.org/10.1016/j.foodchem.2020.128895.

    Article  CAS  PubMed  Google Scholar 

  4. Lestido-Cardama A, Sánchez BM, Sendón R, Rodríguez-Bernaldo de Quirós A, Barbosa-Pereira L. Study on the chemical behaviour of Bisphenol S during the in vitro gastrointestinal digestion and its bioaccessibility. Food Chem. 2022;367.https://doi.org/10.1016/j.foodchem.2021.130758.

  5. Reina-Pérez I, Olivas-Martínez A, Mustieles V, Ruiz-Ojeda FJ, Molina-Molina JM, Olea N, Fernández MF. Bisphenol F and bisphenol S promote lipid accumulation and adipogenesis in human adipose-derived stem cells. Food Chem Toxicol. 2021;152.https://doi.org/10.1016/j.fct.2021.112216.

  6. Gély CA, Huesca A, Picard-Hagen N, Toutain PL, Berrebi A, Gauderat G, Gayrard V, Lacroix MZ. A new LC/MS method for specific determination of human systemic exposure to bisphenol A, F and S through their metabolites: application to cord blood samples. Environ Int. 2021;151.https://doi.org/10.1016/j.envint.2021.106429.

  7. Dualde P, Pardo O, Fernández SF, Pastor A, Yusà V. Determination of four parabens and bisphenols A, F and S in human breast milk using QuEChERS and liquid chromatography coupled to mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2019;1114–1115:154–66. https://doi.org/10.1016/j.jchromb.2019.03.004.

    Article  CAS  Google Scholar 

  8. Deceuninck Y, Bichon E, Gény T, Veyrand B, Grandin F, Viguié C, Marchand P, Le Bizec B. Quantitative method for conjugated metabolites of bisphenol A and bisphenol S determination in food of animal origin by ultra high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2019;1601:232–42. https://doi.org/10.1016/j.chroma.2019.05.001.

    Article  CAS  PubMed  Google Scholar 

  9. Kaya SI, Cetinkaya A, Ozkan SA. Latest advances in determination of bisphenols with nanomaterials, molecularly imprinted polymers and aptamer based electrochemical sensors. Crit Rev Anal Chem. 2020;0:1–21. https://doi.org/10.1080/10408347.2020.1864719.

    Article  CAS  Google Scholar 

  10. Huang YY, Pang YH, Shen XF, Jiang R, Wang YY. Covalent organic framework DQTP modified pencil graphite electrode for simultaneous determination of bisphenol A and bisphenol S. Talanta. 2022;236:122859. https://doi.org/10.1016/j.talanta.2021.122859.

    Article  CAS  PubMed  Google Scholar 

  11. Freitas JM, Wachter N, Rocha-Filho RC. Determination of bisphenol S, simultaneously to bisphenol A in different water matrices or solely in electrolyzed solutions, using a cathodically pretreated boron-doped diamond electrode. Talanta. 2020;217:121041. https://doi.org/10.1016/j.talanta.2020.121041.

    Article  CAS  PubMed  Google Scholar 

  12. Chen K, Zhang W, Zhang Y, Huang L, Wang R, Yue X, Zhu W, Zhang D, Zhang X, Zhang Y, Wang J. Label-free fluorescence aptasensor for sensitive determination of bisphenol S by the salt-adjusted FRET between CQDs and MoS2. Sensors Actuators B Chem. 2018;259:717–24. https://doi.org/10.1016/j.snb.2017.12.116.

    Article  CAS  Google Scholar 

  13. Bernardo RA, Sousa JCP, Gallimberti M, Junior FB, Vaz BG, Chaves AR. A fast and direct determination of bisphenol S in thermal paper samples using paper spray ionization mass spectrometry. Environ Sci Pollut Res. 2021;28:57288–96. https://doi.org/10.1007/s11356-021-14603-0.

    Article  CAS  Google Scholar 

  14. Crapnell RD, Dempsey-Hibbert NC, Peeters M, Tridente A, Banks CE. Molecularly imprinted polymer based electrochemical biosensors: overcoming the challenges of detecting vital biomarkers and speeding up diagnosis. Talanta Open. 2020;2:100018. https://doi.org/10.1016/j.talo.2020.100018.

    Article  Google Scholar 

  15. Cui B, Liu P, Liu X, Liu S, Zhang Z. Molecularly imprinted polymers for electrochemical detection and analysis: progress and perspectives. J Mater Res Technol. 2020;9:12568–84. https://doi.org/10.1016/j.jmrt.2020.08.052.

    Article  CAS  Google Scholar 

  16. Özgür E, Parlak O, Beni V, Turner APF, Uzun L. Bioinspired design of a polymer-based biohybrid sensor interface. Sensors Actuators B Chem. 2017;251:674–82. https://doi.org/10.1016/j.snb.2017.05.030.

    Article  CAS  Google Scholar 

  17. Zuo KH, Zeng YP, Jiang D. Effect of polyvinyl alcohol additive on the pore structure and morphology of the freeze-cast hydroxyapatite ceramics. Mater Sci Eng C. 2010;30:283–7. https://doi.org/10.1016/j.msec.2009.11.003.

    Article  CAS  Google Scholar 

  18. Hur D, Ekti SF, Say R. N-Acylbenzotriazole mediated synthesis of some methacrylamido amino acids. Lett Org Chem. 2007;4:585–7. https://doi.org/10.2174/157017807782795556.

    Article  CAS  Google Scholar 

  19. Uzun L, Say R, Ünal S, Denizli A. Production of surface plasmon resonance based assay kit for hepatitis diagnosis. Biosens Bioelectron. 2009;24:2878–84. https://doi.org/10.1016/j.bios.2009.02.021.

    Article  CAS  PubMed  Google Scholar 

  20. Ozkan SA, Kauffmann J-M, Zuman P. Electroanalysis in biomedical and pharmaceutical sciences. Berlin, Heidelberg: Springer; 2015.

    Book  Google Scholar 

  21. Pang YH, Huang YY, Wang L, Shen XF, Wang YY. Determination of bisphenol A and bisphenol S by a covalent organic framework electrochemical sensor. Environ Pollut. 2020;263:114616. https://doi.org/10.1016/j.envpol.2020.114616.

    Article  CAS  Google Scholar 

  22. Rao H, Zhao X, Liu X, Zhong J, Zhang Z, Zou P, Jiang Y, Wang X, Wang Y. A novel molecularly imprinted electrochemical sensor based on graphene quantum dots coated on hollow nickel nanospheres with high sensitivity and selectivity for the rapid determination of bisphenol S. Biosens Bioelectron. 2018;100:341–7. https://doi.org/10.1016/j.bios.2017.09.016.

    Article  CAS  PubMed  Google Scholar 

  23. Yao J, Chen M, Li N, Liu C, Yang M. Experimental and theoretical studies of a novel electrochemical sensor based on molecularly imprinted polymer and B, N, F-CQDs/AgNPs for enhanced specific identification and dual signal amplification in highly selective and ultra-trace bisphenol S determi. Anal Chim Acta. 2019;1066:36–48. https://doi.org/10.1016/j.aca.2019.03.051.

    Article  CAS  PubMed  Google Scholar 

  24. Viter R, Kunene K, Genys P, Jevdokimovs D, Erts D, Sutka A, Bisetty K, Viksna A, Ramanaviciene A, Ramanavicius A. Photoelectrochemical bisphenol S sensor based on ZnO-nanoroads modified by molecularly imprinted polypyrrole. Macromol Chem Phys. 2020;221:1–6. https://doi.org/10.1002/macp.201900232.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was produced as a part of S. Irem Kaya’s Ph.D. thesis. The authors gratefully acknowledge the Ankara University Scientific Research Project Foundation (Project No: 21L0237002), Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel A. Ozkan.

Ethics declarations

Ethics approval

No human or animal subjects were used in this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 220 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, S.I., Corman, M.E., Uzun, L. et al. A porous molecularly imprinted electrochemical sensor for specific determination of bisphenol S from human serum and bottled water samples in femtomolar level. Anal Bioanal Chem 414, 2775–2785 (2022). https://doi.org/10.1007/s00216-022-03928-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-03928-5

Keywords

Navigation