Skip to main content

Advertisement

Log in

A solvent-assisted ESIPT fluorescent dye for F/Ag+ sensing and high-resolution imaging of the cilia in live cells

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A solvent-assisted ESIPT fluorescent dye was synthesized and used as a probe (2-PPN) for the detection of F/Ag+ and high-resolution imaging of the cilia in live cells. The developed ESIPT fluorophore exhibited strong tautomeric fluorescence in protic solvents and normal emission in aprotic solvents, which is a significant departure from that of conventional intramolecular ESIPT compounds. The H-binding interaction of F and the chelation of Ag+ with the ESIPT module of 2-PPN resulted in significant tautomeric emission quenching. From this basis, the 2-PPN-based assays for the detection of F and Ag+ were established. The detection limit for F and Ag+ sensing is 2.4 nM and 1.5 nM, respectively. The selective experimental results showed that no tautomeric fluorescence change of 2-PPN could be observed in the presence of the other inorganic ions in the same medium, revealing high selectivity of 2-PPN to F and Ag+. Furthermore, MTT assay experiments proved that the probe 2-PPN exhibited low cytotoxicity and good cell membrane permeability. The probe was also further successfully utilized to image the cilia in vitro MCF7 cells, displaying its high-resolution imaging performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee MH, Kim JS, Sessler JL. Small molecule-based ratiometric fluorescence probes for cations, anions and biomolecules. Chem Soc Rev. 2015;44:4185–91. https://doi.org/10.1039/c4cs00280f.

    Article  PubMed  CAS  Google Scholar 

  2. Nsanzamahoro S, Wang WF, Zhang Y, Shi YP, Yang JL. Synthesis of orange-emissive silicon nanoparticles as “off-on” fluorescence probe for sensitive and selective detection of L-methionine and copper. Talanta. 2021;231:122369. https://doi.org/10.1016/j.talanta.2021.122369.

    Article  PubMed  CAS  Google Scholar 

  3. Lee W, Yudhistira T, Youn W, Han S, Halle MB, Choi JH, Kim Y, Choi IS, Churchill DG. Inexpensive water soluble methyl methacrylate-functionalized hydroxyphthalimide: variations of the mycophenolic acid core for selective live cell imaging of free cysteine. Analyst. 2021;146:2212–20. https://doi.org/10.1039/d0an02185g.

    Article  PubMed  CAS  Google Scholar 

  4. Subhankar S, Dokyoung K, Hyewon S, Seo WC, Kyo HA. Fluorescence sensing systems for gold and silver species. Chem Soc Rev. 2015;44:4367–99. https://doi.org/10.1039/c4cs00328d.

    Article  CAS  Google Scholar 

  5. Guria S, Ghosh A, Manna K, Pal A, Adhikary A, Adhikari S. Rapid detection of aspartic acid and glutamic acid in water by BODIPY-based fluorescent probe: live-cell imaging and DFT studies. Dyes Pigments. 2019;168:111–22. https://doi.org/10.1016/j.dyepig.2019.04.052.

    Article  CAS  Google Scholar 

  6. Park SH, Kwon N, Lee JH, Yoon J, Shin I. Synthetic ratiometric fluorescent probes for detection of ions. Chem Soc Rev. 2020;49:143–79. https://doi.org/10.1039/c9cs00243j.

    Article  PubMed  CAS  Google Scholar 

  7. Wang Y, Hu Y, Weng W, Chang S, Xu H, Li D, Li DW. Nitrogen-doped graphene quantum dots based fluorescent probe for highly sensitive detection of thiosulfate anion and oxidative compounds. J Photochem Photobiol A Chem. 2021;412:113234. https://doi.org/10.1016/j.jphotochem.2021.113234.

    Article  CAS  Google Scholar 

  8. Zhu Z, Ding H, Wang Y, Fan C, Tu Y, Liu G, Pu S. Rational design of a FRET-based ratiometric fluorescent chemosensor for detecting ClO with large stokes based on rhodamine and naphthalimide fluorophores. Tetrahedron. 2020;76:131291. https://doi.org/10.1016/j.tet.2020.131291.

    Article  CAS  Google Scholar 

  9. Kwon N, Baek G, Swamy K, Lee M, Xu Q, Kim Y, Kim S, Yoon J. Naphthoimidazolium based ratiometric fluorescent probes for F and CN,and anion-activated CO2 sensing. Dyes Pigments. 2019;171:107679. https://doi.org/10.1016/j.dyepig.2019.107679.

    Article  CAS  Google Scholar 

  10. Ashokkumar P, Weisshoff H, Kraus W, Rurack K. Test-strip-based fluorometric detection of fluoride in aqueous media with a BODIPY-linked hydrogen-binding receptor. Angew Chem Int Ed. 2014;53:2225–9. https://doi.org/10.1002/anie.201307848.

    Article  CAS  Google Scholar 

  11. Han J, Zhang J, Gao M, Hao H, Xu X. Recent advances in chromo-fluorogenic probes for fluoride detection. Dyes Pigments. 2018;162:412–39. https://doi.org/10.1016/j.dyepig.2018.10.047.

    Article  CAS  Google Scholar 

  12. Sauerheber R. Physiologic conditions affect toxicity of ingested industrial fluoride. J Environ Public Health. 2013;5:439490. https://doi.org/10.1155/2013/439490.

    Article  CAS  Google Scholar 

  13. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002.

    Article  PubMed  CAS  Google Scholar 

  14. Lansdown ABG. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol. 2006;33:17–34. https://doi.org/10.1159/000093928.

    Article  PubMed  CAS  Google Scholar 

  15. Zhu G, Zhang CY. Functional nucleic acid-based sensors for heavy metal ion assays. Analyst. 2014;139:6326–42. https://doi.org/10.1039/c4an01069h.

    Article  PubMed  CAS  Google Scholar 

  16. Sahoo SK, Sharma D, Bera RK, Crisponi G, Callan JF. Iron(III) selective molecular and supramolecular fluorescent probes. Chem Soc Rev. 2012;41:7195–227. https://doi.org/10.1039/c2cs35152h.

    Article  PubMed  CAS  Google Scholar 

  17. Odyniec ML, Park SJ, Gardiner JE, Webb EC, Sedgwick AC, Yoon J, Bull SD, Kim HM, James TD. A fluorescent ESIPT-based benzimidazole platform for the ratiometric two-photon imaging of ONOO in vitro and ex vivo. Chem Sci. 2020;11:7329–34. https://doi.org/10.1039/d0sc02347g.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Padalkar VS, Seki S. Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chem Soc Rev. 2015;45:169–202. https://doi.org/10.1039/c5cs00543d.

    Article  CAS  Google Scholar 

  19. Sedgwick AC, Wu L, Han HH, Bull SD, He XP, James TD, Sessler JL, Tang BZ, Tian H, Yoon J. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem Soc Rev. 2018;47:8842. https://doi.org/10.1039/c8cs00185e.

    Article  PubMed  CAS  Google Scholar 

  20. Azarias C, Budzak S, Laurent AD, Ulrich G, Jacquemin D. Tuning ESIPT fluorophores into dual emitters. Chem Sci. 2016;7:3763–74. https://doi.org/10.1039/c5sc04826e.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sakai KI, Ishikawa T, Akutagawa T. A blue-white-yellow color-tunable excited state intramolecular proton transfer (ESIPT) fluorophore: sensitivity to polar–nonpolar solvent ratios. J Mater Chem C. 2013;1:7866–71. https://doi.org/10.1039/c3tc31526f.

    Article  CAS  Google Scholar 

  22. Chen L, Wu D, Lim CS, Kim D, Nam SJ, Lee W, Kim G, Kim HM, Yoon J. A two-photon fluorescent probe for specific detection of hydrogen sulfide based on a familiar ESIPT fluorophore bearing AIE characteristics. Chem Commun. 2017;53:4791–4. https://doi.org/10.1039/c7cc01695f.

    Article  CAS  Google Scholar 

  23. Manojai N, Daengngern R, Kerdpol K, Ngaojampa C, Kungwan N. Heteroatom effect on photophysical properties of 2-(2′-hydroxyphenyl) benzimidazole and its derivatives as fluorescent dyes: a TD-DFT study. J Lumin. 2017;188:275–82. https://doi.org/10.1016/j.jlumin.2017.04.040.

    Article  CAS  Google Scholar 

  24. Honda T, Ishida Y, Arai T. Substituent effect of formyl group on photochemical properties of 2-(2′-hydroxyphenyl) benzazole derivative. Bull Chem Soc Jpn. 2016;89:876–8. https://doi.org/10.1246/bcsj.20160094.

    Article  CAS  Google Scholar 

  25. Neuwahl F, Bussotti L, Righini R, Buntinx G. Ultrafast proton transfer in the S1 state of 1-chloroacetylaminoanthraquinone. Phys Chem Chem Phys. 2001;3:1277–83. https://doi.org/10.1039/b007312l.

    Article  CAS  Google Scholar 

  26. Smit T, Zaklika KA, Thakur K, Walker GC, Barbara PF. Ultrafast studies on proton transfer in photostabilizers. J. Photochem. Photobiol A. 1992;65:165–75. https://doi.org/10.1016/1010-6030(92)85041-R.

    Article  Google Scholar 

  27. Qian Y, Li S, Zhang G, Qian Y, Li S, Zhang G, Wang Q, Wang S, Xu H, Li C, Li Y, Yang G. Aggregation-induced emission enhancement of 2-(2′-hydroxyphenyl)benzothiazole-based excited-state intramolecular proton-transfer compounds. J Phys Chem B. 2007;111:5861–8. https://doi.org/10.1021/jp070076i.

    Article  PubMed  CAS  Google Scholar 

  28. Goswami S, Das S, Aich K, Pakhira B, Panja S, Mukherjee SK, Sarkar S. A chemodosimeter for the ratiometric detection of hydrazine based on return of ESIPT and its application in live-cell imaging. Org Lett. 2013;15:5412–5. https://doi.org/10.1021/ol4026759.

    Article  PubMed  CAS  Google Scholar 

  29. Jin X, Sun X, Di X, Zhang X, Huang H, Liu J, Ji P, Zhu H. Novel fluorescent ESIPT probe based on flavone for nitroxyl in aqueous solution and serum. Sens Actuators B Chem. 2016;224:209–16. https://doi.org/10.1016/j.snb.2015.09.072.

    Article  CAS  Google Scholar 

  30. Liu B, Wang J, Zhang G, Bai R, Pang Y. Flavone-based ESIPT ratiometric chemodosimeter for detection of cysteine in living cells. ACS Appl Mater Interfaces. 2014;6:4402–7. https://doi.org/10.1021/am500102s.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mata S, Cortijo V, Caminati W, Alonso JL, Sanz ME, López JC, Blanco S. Tautomerism and microsolvation in2-hydroxypyridine/2-pyridone. J Phys Chem A. 2010;114:11393–8. https://doi.org/10.1021/jp104625z.

    Article  PubMed  CAS  Google Scholar 

  32. Hatherley LD, Brown RD, Godfrey PD, Pierlot AP, Caminati W, Damiani D, Melandri S, Favero LB. Gas-phase tautomeric equilibrium of 2-pyridinone and 2-hydroxypyridine by microwave spectroscopy. J. Phys. Chem. 1993;97:46–51. https://doi.org/10.1021/j100103a011.

    Article  CAS  Google Scholar 

  33. Wu D-L, Liu L, Liu G-F, Jia D-Z. A binitio/DFT and AIM studies on dual hydrogen-bonded complexes of 2-hydroxypyridine/2-pyridone tautomerism. J Phys Chem A. 2007;111:5244–52. https://doi.org/10.1021/jp0702494.

    Article  PubMed  CAS  Google Scholar 

  34. Alkorta I, Elguero J. Influence of intermolecular hydrogen bonds on the tautomerism of pyridine derivatives. J. Org. Chem. 2002;67:1515–9. https://doi.org/10.1021/jo016069m.

    Article  PubMed  CAS  Google Scholar 

  35. Forlani L, Cristoni G, Boga C, Todesco PE, DelVecchio E, Selva S, Monari M. Reinvestigation of the tautomerism of some substituted 2-hydroxypyridines. ARKIVOC. 2002;2002:198–215. https://doi.org/10.3998/ark.5550190.0003.b18.

    Article  Google Scholar 

  36. Li QS, Fang WH, Yu JG. Theoretical studies of proton-transfer reactions of 2-hydroxypyridine-(H2O)n (n = 0-2) in the ground and excited states. J Phys Chem A. 2005;109:3983–0. https://doi.org/10.1021/jp044498t.

    Article  PubMed  CAS  Google Scholar 

  37. Borst DR, Roscioli JR, Pratt DW, Florio GM, Leutwyler S. Hydrogen bonding and tunneling in the 2-pyridone·2-hydroxypyridine dimer. Effect of electronic excitation. Chem Phys. 2002;283:341–54. https://doi.org/10.1016/S0301-0104(02)00598-0.

    Article  CAS  Google Scholar 

  38. Li Q, Mitscher LA, Shen LI. The 2-pyridone antibacterial agents: bacterial to poisomerase inhibitors. Med Res Rev. 2000;20:231–93. https://doi.org/10.1002/1098-1128(200007)20:4<231::aid-med1>3.0.co;2-n.

    Article  PubMed  CAS  Google Scholar 

  39. Nagle PS, Pawar YA, Sonawane AE, Bhosale SM, More DH. Synthesis and evaluation of antioxidant and antimicrobial properties of thymol containing pyridone moieties. Med Chem Res. 2012;21:1395–402. https://doi.org/10.1007/s00044-011-9656-7.

    Article  CAS  Google Scholar 

  40. Stasyuk AJ, Banasiewicz M, Cyrański MK, Gryko DT. Imidazo[1,2-a]pyridines susceptible to excited state intramolecular proton transfer: one-pot synthesis via an Ortoleva-King reaction. J Org Chem. 2012;77:5552–8. https://doi.org/10.1021/jo300643w.

    Article  PubMed  CAS  Google Scholar 

  41. Nawaz M, Hisaindee S, Graham JP, Rauf MA, Saleh N. Synthesis and spectroscopic properties of pyridones-experimental and theoretical insight. J Mole Liqu. 2014;193:51–9. https://doi.org/10.1016/j.molliq.2013.12.033.

    Article  CAS  Google Scholar 

  42. Yoneda Y, Mora SJ, Shee J, Wadsworth BL, Arsenault EA, Hait D, Kodis G, Gust D, Moore GF, Moore AL, Head-Gordon M, Moore TA, Fleming GR. Electron-nuclear dynamics accompanying proton-coupled electron transfer. J Am Chem Soc. 2021;143:3104–12. https://doi.org/10.1021/jacs.0c10626.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 31527803; 21545010), the Research Foundation of Education Bureau of Hunan Province (No. 18A141), and the State Key Laboratory of Bio-organic and Natural Product Chemistry (No. SKLBNPC19250).

Author information

Authors and Affiliations

Authors

Contributions

Fuchun Gong: conceptualization, investigation; Dan Zeng: data curation, formal analysis; Hanming Zhu: methodology; Lingzhi He: funding acquisition, writing—original draft; You Qian: resources, software; Jiaoyun Xia: writing—review and editing; Zhong Cao: project administration

Corresponding author

Correspondence to Fuchun Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1861 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, F., Zeng, D., Zhu, H. et al. A solvent-assisted ESIPT fluorescent dye for F/Ag+ sensing and high-resolution imaging of the cilia in live cells. Anal Bioanal Chem 413, 6343–6353 (2021). https://doi.org/10.1007/s00216-021-03590-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03590-3

Keywords

Navigation