Skip to main content

Advertisement

Log in

A simple and accurate HFCF-UF method for the analysis of homocysteine, cysteine, cysteinyl-glycine, and glutathione in human blood

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The presence of reduced aminothiols, including homocysteine (Hcy), cysteine (Cys), cysteinyl-glycine (CG), and glutathione (GSH), is significantly increased in the pathological state. However, there have been no reports on the relationship between reduced aminothiols (Hcy, Cys, CG, and GSH) and different genders, ages, and drug combinations in human blood. The accurate quantification of these reduced thiols in biological fluids is important for monitoring some special pathological conditions of humans. However, the published methods typically not only require cumbersome and technically challenging processing procedures to ensure reliable measurements, but are also laborious and time-consuming, which may disturb the initial physiological balance and lead to inaccurate results. We developed a hollow fiber centrifugal ultrafiltration (HFCF-UF) method for sample preparation coupled with a high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS) method and used it to determine four reduced aminothiols (Hcy, Cys, CG, and GSH) in human blood for the first time. A total of 96 clinical patients were enrolled in our study. The influence of different genders, ages, and drug combinations on the levels of four reduced thiols in human blood was also discussed by SPSS 24.0. The sample preparation was simplified to a single 5 min centrifugation step in a sealed system that did not disturb the physiological environment. The validation parameters for the methodological results were excellent. The procedure was successfully applied to monitoring the concentrations of four reduced aminothiols (Hcy, Cys, CG, and GSH) in 96 clinical blood samples. There were no significant differences in Hcy, Cys, CG, or GSH for the different genders, ages, or combinations with methotrexate or vancomycin (P > 0.05). However, there was a significant increase in Hcy concentration in patients treated with valproic acid who were diagnosed with epilepsy (p=0.0007). It is advisable to measure reduced Hcy level in patients taking valproic acid. The developed HFCF-UF method was simple and accurate. It can be easily applied in clinical research to evaluate oxidative stress in further study.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Toyo’oka T. Recent advances in separation and detection methods for thiol compounds in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(28):3318–30.

    Article  PubMed  CAS  Google Scholar 

  2. Moore T, Le A, Niemi AK, Kwan T, Cusmano-Ozog K, Enns GM, et al. A new LC-MS/MS method for the clinical determination of reduced and oxidized glutathione from whole blood. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;929(15):51–5.

    Article  PubMed  CAS  Google Scholar 

  3. Isokawa M, Kanamori T, Funatsu T, Tsunoda M. Analytical methods involving separation techniques for determination of low-molecular-weight biothiols in human plasma and blood. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;964:103–15.

    Article  PubMed  CAS  Google Scholar 

  4. Zhang WL, Li Y, Liang Y, Yin XP, Liu CC, Wang SQ, et al. Direct determination of redox statuses in biological thiols and disulfides with noncovalent interactions of poly(ionic liquid)s. ACS Appl Mater Interfaces. 2019;11(33):30137–45.

    Article  PubMed  CAS  Google Scholar 

  5. Enomoto AC, Schneider E, McKinnon T, Goldfine H, Levy MA, et al. Validation of a simplified procedure for convenient and rapid quantification of reduced and oxidized glutathione in human plasma by liquid chromatography tandem mass spectrometry analysis. Biomed Chromatogr. 2020;34(9):e4854–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Rallidis LS, Kosmas N, Rallidi T, Pavlakis G, Kiouri E, Zolindaki M. Homocysteine is an independent predictor of long-term cardiac mortality in patients with stable coronary artery disease in the era of statins. Coron Artery Dis. 2020;31(2):152–6.

    Article  PubMed  Google Scholar 

  7. Han K, Lu Q, Zhu WJ, Wang TZ, Du Y, Bai L. Correlations of degree of coronary artery stenosis with blood lipid, CRP, Hcy, GGT, SCD36 and fibrinogen levels in elderly patients with coronary heart disease. Eur Rev Med Pharmacol Sci. 2019;23(21):9582–9.

    PubMed  CAS  Google Scholar 

  8. Lu SC. Glutathione synthesis. Biochim Biophys Acta. 2013;1830(5):3143–53.

    Article  PubMed  CAS  Google Scholar 

  9. Milanese C, Payán-Gómez C, Mastroberardino PG. Cysteine oxidation and redox signaling in dopaminergic neurons physiology and in Parkinson’s disease. Curr Opin Physiol. 2019;9:73–8.

    Article  Google Scholar 

  10. Mu XW, Wu MX, Zhang B, Liu X, Xu SM, Huang YB, et al. A sensitive "off-on" carbon dots-Ag nanoparticles fluorescent probe for cysteamine detection via the inner filter effect. Talanta. 2021;221:121463.

    Article  PubMed  CAS  Google Scholar 

  11. Kuśmierek K, Chwatko G, Głowacki R, Bald E. Determination of endogenous thiols and thiol drugs in urine by HPLC with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(28):3300–8.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang WB, Li PL, Geng QQ, Duan YH, Guo MC, Cao YS. Simultaneous determination of glutathione, cysteine, homocysteine, and cysteinylglycine in biological fluids by ion-pairing high-performance liquid chromatography coupled with precolumn derivatization. J Agric Food Chem. 2014;62(25):5845–52.

    Article  PubMed  CAS  Google Scholar 

  13. Zinellu A, Sotgia S, Scanu B, Pisanu E, Sanna M, Sati S, et al. Determination of homocysteine thiolactone, reduced homocysteine, homocystine, homocysteine–cysteine mixed disulfide, cysteine and cystine in a reaction mixture by overimposed pressure/voltage capillary electrophoresis. Talanta. 2010;82(4):1281–5.

    Article  PubMed  CAS  Google Scholar 

  14. Espina JG, Montes-Bayón M, Blanco-González E, Sanz-Medel A. Determination of reduced homocysteine in human serum by elemental labelling and liquid chromatography with ICP-MS and ESI-MS detection. Anal Bioanal Chem. 2015;407(26):7899–906.

    Article  PubMed  CAS  Google Scholar 

  15. Ma L, He J, Zhang XQ, Cui Y, Gao JY, Tang XF, et al. Determination of total, free, and reduced homocysteine and related aminothiols in uremic patients undergoing hemodialysis by precolumn derivatization HPLC with fluorescence detection. RSC Adv. 2014;4:58412–6.

    Article  CAS  Google Scholar 

  16. Sjöberg B, Anderstam B, Suliman M, Alvestrand A. Plasma reduced homocysteine and other aminothiol concentrations in patients with CKD. Am J Kidney Dis. 2006;47(1):60–71.

    Article  PubMed  CAS  Google Scholar 

  17. Hoffer LJ, Robitaille L, Elian KM, Bank I, Hongsprabhas P, Mamer OA. Plasma reduced homocysteine concentrations are increased in end stage renal disease. Kidney Int. 2001;59(1):372–7.

    Article  PubMed  CAS  Google Scholar 

  18. Chambers JC, Ueland PM, Wright M, Dore CJ, Refsum H, Kooner JS. Investigation of relationship between reduced, oxidized, and protein bound homocysteine and vascular endothelial function in healthy human subjects. Circ Res. 2001;89(2):187–92.

    Article  PubMed  CAS  Google Scholar 

  19. Williams RH, Maggiore JA, Reynolds RD, Helgason M. Novel approach for the determination of the redox status of homocysteine and other aminothiols in plasma from healthy subjects and patients with ischemic stroke. Clin Chem. 2001;47(6):1031–9.

    Article  PubMed  CAS  Google Scholar 

  20. Piechocka J, Wrońska M, Chwatko G, Jakubowski H, Głowacki R. Quantification of homocysteine thiolactone in human saliva and urine by gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1149:122155.

    Article  PubMed  CAS  Google Scholar 

  21. Claeson AS, Gouveia-Figueira S, Stenlund H, Johansson AI. A standardized protocol for comparable analysis of GSH/GSSG by UHPLC-ESI-MSMS for human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;1104:67–2.

    Article  PubMed  CAS  Google Scholar 

  22. Steele ML, Ooi L, Münch G. Development of a high-performance liquid chromatography method for the simultaneous quantitation of glutathioneand related thiols. Anal Biochem. 2012;429:45–52.

    Article  PubMed  CAS  Google Scholar 

  23. Forgacsova A, Galba J, Mojzisova J, Mikus P, Piestansky J, Kovac A. Ultra-high performance hydrophilic interaction liquid chromatography-triple quadrupole tandem mass spectrometry method for determination of cysteine, homocysteine, cysteinyl-glycine and glutathione in rat plasma. J Pharm Biomed Anal. 2019;164:442–51.

    Article  PubMed  CAS  Google Scholar 

  24. Escobar J, Sánchez-Illana Á, Kuligowski J, Torres-Cuevas I, Solberg R, Garberg HT, et al. Development of a reliable method based on ultra-performance liquid chromatography coupled to tandem mass spectrometry to measure thiol associated oxidative stress in whole blood samples. J Pharm Biomed Anal. 2016;123:104–12.

    Article  PubMed  CAS  Google Scholar 

  25. Kamińska A, Olejarz P, Borowczyk K, Głowacki R, Chwatko G. Simultaneous determination of total homocysteine, cysteine, glutathione, and N-acetylcysteine in brain homogenates by HPLC. J Sep Sci. 2018;41(16):3241–9.

    Article  PubMed  CAS  Google Scholar 

  26. Rellán-Alvarez R, Hernández LE, Abadía J, Alvarez-Fernández A. Direct and simultaneous determination of reduced and oxidized glutathione and homoglutathione by liquid chromatography-electrospray/mass spectrometry in plant tissue extracts. Anal Biochem. 2006;356(2):254–64.

    Article  PubMed  CAS  Google Scholar 

  27. Li WK, Lin H, Smith HT, Tse FLS. Developing a robust ultrafiltration- LC-MS/MS method for quantitative analysis of unbound vadimezan (ASA404) in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879(21):1927–33.

    Article  PubMed  CAS  Google Scholar 

  28. Ivanov AV, Luzyanin BP, Kubatiev AA. The use of N-ethylmaleimide for mass spectrometric detection of homocysteine fractions in blood plasma. Bull Exp Biol Med. 2012;152(3):289–92.

    Article  PubMed  CAS  Google Scholar 

  29. Dong WC, Zhang JF, Hou ZL, Jiang XH, Zhang FC, Zhang HF, et al. The influence of volume ratio of ultrafiltrate of sample on the analysis of non-protein binding drugs in human plasma. Analyst. 2013;138(24):7369–75.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang L, Zhang ZQ, Dong WC, Jing SJ, Zhang JF, Jiang Y. Accuracy assessment on the analysis of unbound drug in plasma by comparing traditional centrifugal ultrafiltration with hollow fiber centrifugal ultrafiltration and application in pharmacokinetic study. J Chromatogr A. 2013;1318:265–9.

    Article  PubMed  CAS  Google Scholar 

  31. Wang XY, Gao JL, Du CH, An J, Li MJ, Ma HY, et al. A novel pretreatment method combining sealing technique with direct injection technique applied for improving biosafety. Bioanalysis. 2017;9(2):173–82.

    Article  PubMed  CAS  Google Scholar 

  32. Rodriguez JJ, Santolaria F, Martinez-Riera A, Gonzalez-Reimers E, de la Vega Prieto MJ, Valls MR, et al. Clinical significance of homocysteine in elderly hospitalized patients. Metabolism. 2006;55(5):620–7.

    Article  PubMed  CAS  Google Scholar 

  33. Dankner R, Chetrit A, Lubin F, Sela BA. Life-style habits and homocysteine levels in an elderly population. Aging Clin Exp Res. 2004;16(6):437–42.

    Article  PubMed  CAS  Google Scholar 

  34. Ostrakhovitch EA, Tabibzadeh S. Homocysteine and age-associated disorders. Ageing Res Rev. 2019;49:144–64.

    Article  PubMed  CAS  Google Scholar 

  35. Sener U, Zorlu Y, Karaguzel O, Ozdamar O, Coker I, Topbas M. Effects of common anti-epileptic drug monotherapy on serum levels of homocysteine, vitamin B12, folic acid and vitamin B6. Seizure. 2006;15(2):79–85.

    Article  PubMed  Google Scholar 

  36. Karabiber H, Sonmezgoz E, Ozerol E, Yakinci C, Otlu B, Yologlu S. Effects of valproate and carbamazepine on serum levels of homocysteine, Vitamin B12, and folic acid. Brain Dev. 2003;25:113–5.

    Article  PubMed  Google Scholar 

  37. Apeland T, Mansoor MA, Strandjord RE. Antiepileptic drugs as independent predictors of plasma total homocysteine levels. Epilepsy Res. 2001;47:27–35.

    Article  PubMed  CAS  Google Scholar 

  38. Maksimova MY, Ivanov AV, Virus ED, Alexandrin VV, Nikiforova KA, Bulgakova PO, et al. Disturbance of thiol/disulfide aminothiols homeostasis in patients with acute ischemic stroke stroke: Preliminary findings. Clin Neurol Neurosurg. 2019;183:105393.

    Article  PubMed  Google Scholar 

  39. Daneva Z, Laubach VE, Sonkusare SK. Novel regulators and targets of redox signaling in pulmonary vasculature. Curr Opin Physiol. 2019;9:87–93.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Guan X, Hoffman B, Dwivedi C, Matthees DP. A simultaneous liquid chromatography/mass spectrometricassay of glutathione, cysteine, homocysteine and their disulfides in biological samples. J Pharm Biomed Anal. 2003;31(2):251–61.

    Article  PubMed  CAS  Google Scholar 

  41. Sun Y, Yao T, Guo XC, Peng Y. Simultaneous assessment of endogenous thiol compounds by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1029-1030:213–21.

    Article  PubMed  CAS  Google Scholar 

  42. Hammermeister DE, Serrano J, Schmieder P, Kuehl DW. Characterization of dansylated glutathione, glutathione disulfide, cysteine and cystine by narrow bore liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2000;14(6):503–8.

    Article  PubMed  CAS  Google Scholar 

  43. Lee SG, Yim J, Lim Y, Kim JH. Validation of a liquid chromatography tandem mass spectrometrymethod to measure oxidized and reduced forms of glutathione inwhole blood and verification in a mouse model as an indicator ofoxidative stress. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1019:45–50.

    Article  PubMed  CAS  Google Scholar 

  44. Russo MST, Napylov A, Paquet A, Vuckovic D. Comparison of N-ethyl maleimide and N-(1-phenylethyl) maleimide for derivatization of biological thiols using liquid chromatography-mass spectrometry. Anal Bioanal Chem. 2020;412(7):1639–52.

    Article  PubMed  CAS  Google Scholar 

  45. Mcgill MR, Jaeschke H. A direct comparison of methods used to measure oxidized glutathione in biological samples: 2-vinylpyridine and N-ethylmaleimide. Toxicol Mech Methods. 2015;25(8):589–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

The authors received the financial support provided by the Wu Jieping Medical Foundation (No. 320.6750.2020-04-11) and the Science and Technology Foundation of Hebei Province of China (Project No. 19277728D). The research was also supported by the National Natural Science Foundation of China (82002281) and the Natural Science Foundation of Hebei Province (H2021206299).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ye Jiang or Zhi-Qing Zhang.

Ethics declarations

Ethical approval

The study protocol was approved by the Ethics Committee of Hebei Medical University. All the blood samples in our present work were obtained from the Second Hospital of Hebei Medical University.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 16.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, WC., Guo, JL., Zhao, MQ. et al. A simple and accurate HFCF-UF method for the analysis of homocysteine, cysteine, cysteinyl-glycine, and glutathione in human blood. Anal Bioanal Chem 413, 6225–6237 (2021). https://doi.org/10.1007/s00216-021-03578-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03578-z

Keywords

Navigation