Skip to main content

Advertisement

Log in

Automated method to determine pharmaceutical compounds in wastewater using on-line solid-phase extraction coupled to LC-MS/MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An automated method was developed using on-line solid-phase extraction (SPE) as a sample preparation step, coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS), for determination of pharmaceutical compounds in wastewater samples at nanograms per liter to micrograms per liter concentration levels. This method is suitable for use in routine analysis, especially in environmental applications, avoiding cross-contamination and requiring minimal sample handling. Results can be obtained rapidly, with a chromatographic run time of only 24 min (including sample preparation and chromatographic analysis). Using a 50 μL injection volume, the method was validated according to international guidelines, considering parameters included in terms of method detection (MDL) and quantification limit (MQL), linearity, inter-day and intra-day precisions, and matrix effects. Assessment of chromatographic efficiency considered peak resolution and asymmetry, and carryover was evaluated to ensure analytical reliability and the ability to reuse the SPE cartridge. The intra- and inter-day precisions were lower than 10 and 17%, respectively. The MDL values ranged from 1×10-6 to 1 μg L-1, while the MQL values were from 0.001 to 3 μg L-1. Matrix effects were minimized by isotope dilution calibration. Application of the method to 20 wastewater samples showed that caffeine was the most frequently detected compound, with the highest concentration of 715 μg L-1, while other pharmaceutical compounds were detected in fewer samples and at lower concentrations (up to 8.51 μg L-1).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chinnaiyan P, Thampi SG, Kumar M, Mini KM. Pharmaceutical products as emerging contaminant in water: relevance for developing nations and identification of critical compounds for Indian environment. Environ Monit Assess. 2018;190:288.

    Article  PubMed  Google Scholar 

  2. Mohapatra DP, Kirpalani DM. Advancement in treatment of wastewater: fate of emerging contaminants. Can J Chem Eng. 2019;97:2621–31.

    Article  CAS  Google Scholar 

  3. Marasco Júnior CA, Luchiari NDC, Lima Gomes PCF. Occurrence of caffeine in wastewater and sewage and applied techniques for analysis: a review. Eclética Quím J. 2019;44:11–26.

    Article  Google Scholar 

  4. U.S. GAO Government Accountability Office Toxic Chemicals - High Risk Issue. https://www.gao.gov/key_issues/toxic_chemicals/issue_summary. Accessed on March 16, 2020.

  5. Mattarozzi M, Careri M. Liquid chromatography/mass spectrometry in environmental analysis. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chichester, UK: John Wiley & Sons, Ltd; 2015. p. 1–41.

    Google Scholar 

  6. Loos G, Van Schepdael A, Cabooter D. Quantitative mass spectrometry methods for pharmaceutical analysis. Philos Trans R Soc A Math Phys Eng Sci. 2016;374:20150366.

    Article  Google Scholar 

  7. Pérez-Fernández V, Mainero Rocca L, Tomai P, Fanali S, Gentili A. Recent advancements and future trends in environmental analysis: sample preparation, liquid chromatography and mass spectrometry. Anal Chim Acta. 2017;983:9–41.

    Article  PubMed  CAS  Google Scholar 

  8. Silva CGA, Collins CH. Aplicações de cromatografia líquida de alta eficiência para o estudo de poluentes orgânicos emergentes. Quím Nova. 2011;34:665–76.

    Article  Google Scholar 

  9. Pavlović DM, Babić S, Horvat AJM, Kaštelan-Macan M. Sample preparation in analysis of pharmaceuticals. TrAC Trends Anal Chem. 2007;26:1062–75.

    Article  CAS  Google Scholar 

  10. Zhong M, Wang T, Qi C, Peng G, Lu M, Huang J, et al. Automated online solid-phase extraction liquid chromatography tandem mass spectrometry investigation for simultaneous quantification of per- and polyfluoroalkyl substances, pharmaceuticals and personal care products, and organophosphorus flame retardants in environmental waters. J Chromatogr A. 1602;2019:350–8.

    Google Scholar 

  11. Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodríguez JJ. On-line solid-phase extraction coupled to ultra-performance liquid chromatography with tandem mass spectrometry detection for the determination of benzotriazole UV stabilizers in coastal marine and wastewater samples. Anal Bioanal Chem. 2012;403:867–76.

    Article  CAS  PubMed  Google Scholar 

  12. Lima Gomes PCF, Tomita IN, Santos-Neto AJ, Zaiat M. Rapid determination of 12 antibiotics and caffeine in sewage and bioreactor effluent by online column-switching liquid chromatography/tandem mass spectrometry. Anal Bioanal Chem. 2015;407:8787–801.

    Article  CAS  PubMed  Google Scholar 

  13. Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerdà V. Solid-phase extraction of organic compounds: a critical review (Part I). TrAC Trends Anal Chem. 2016;80:641–54.

    Article  CAS  Google Scholar 

  14. Buszewski B, Szultka M. Past, present, and future of solid phase extraction: a review. Crit Rev Anal Chem. 2012;42:198–213.

    Article  CAS  Google Scholar 

  15. Valsecchi S, Polesello S, Mazzoni M, Rusconi M, Petrovic M. On-line sample extraction and purification for the LC–MS determination of emerging contaminants in environmental samples. Trends Environ Anal Chem. 2015;8:27–37.

    Article  CAS  Google Scholar 

  16. Fan X, Gao J, Li W, Huang J, Yu G. Determination of 27 pharmaceuticals and personal care products (PPCPs) in water: the benefit of isotope dilution. Front Environ Sci Eng. 2020;14:8.

    Article  CAS  Google Scholar 

  17. Huntscha S, Singer HP, McArdell CS, Frank CE, Hollender J. Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2012;1268:74–83.

    Article  CAS  PubMed  Google Scholar 

  18. Petrie B, McAdam EJ, Scrimshaw MD, Lester JN, Cartmell E. Fate of drugs during wastewater treatment. TrAC Trends Anal Chem. 2013;49:145–59.

    Article  CAS  Google Scholar 

  19. Gros M, Pizzolato T-M, Petrović M, Alda MJL, Barceló D. Trace level determination of β-blockers in waste waters by highly selective molecularly imprinted polymers extraction followed by liquid chromatography–quadrupole-linear ion trap mass spectrometry. J Chromatogr A. 2008;1189:374–84.

    Article  CAS  PubMed  Google Scholar 

  20. Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC−MS/MS. Anal Chem. 2003;75:3019–30.

    Article  CAS  PubMed  Google Scholar 

  21. Stuber M, Reemtsma T. Evaluation of three calibration methods to compensate matrix effects in environmental analysis with LC-ESI-MS. Anal Bioanal Chem. 2004;378:910–6.

    Article  PubMed  CAS  Google Scholar 

  22. Azzouz A, Souhail B, Ballesteros E. Continuous solid-phase extraction and gas chromatography–mass spectrometry determination of pharmaceuticals and hormones in water samples. J Chromatogr A. 2010;1217(17):2956–63.

    Article  CAS  PubMed  Google Scholar 

  23. Fontanals N, Marcé RM, Borrull F. New hydrophilic materials for solid-phase extraction. TrAC, Trends Anal. Chem. 2005;24(5):394–406.

    CAS  Google Scholar 

  24. Buerge IJ, Poiger T, Müller MD, Buser H-R. Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ Sci Technol. 2003;37:691–700.

    Article  CAS  PubMed  Google Scholar 

  25. Hai F, Yang S, Asif M, Sencadas V, Shawkat S, Sanderson-Smith M, et al. Carbamazepine as a possible anthropogenic marker in water: occurrences, toxicological effects, regulations and removal by wastewater treatment technologies. Water. 2018;10(2):107.

    Article  CAS  Google Scholar 

  26. Millar NL, Siebert S, McInnes IB. Europe rules on harm from fluoroquinolone antibiotics. Nature. 2019;566:1.

    Article  CAS  Google Scholar 

  27. ClinCalc, The top 300 of 2020. URL https://clincalc.com/DrugStats/Top300Drugs.aspx. Accessed on August 4, 2020.

  28. Haddad PR. In: Meyers, R. A. (Ed.), Column theory and resolution in liquid chromatography, Encyclopedia of analytical chemistry. John Wiley & Sons, Ltd, Chichester, UK 2009, pp. 1-9.

    Google Scholar 

  29. da Silva BF, Souza JC, Zanoni MVB. Corantes: Caracterização Química, Toxicológica, Métodos de Detecção e Tratamento. São Paulo: Cultura Acadêmica; 2016. p. 347.

    Google Scholar 

  30. Gómez-Ramos MDM, Rajski Ł, Lozano A, Fernández-Alba AR. The evaluation of matrix effects in pesticide multi-residue methods via matrix fingerprinting using liquid chromatography electrospray high-resolution mass spectrometry. Anal Methods. 2016;8:4664–73.

    Article  CAS  Google Scholar 

  31. Martins GS, Luchiari NC, Lamarca RS, Silva BF, Gomes PCFL. Removal of sulfamethoxazol and trimethoprim using horizontal-flow anaerobic immobilized bioreactor. Sci Chromatogr. 2017;9:253–64.

    Article  Google Scholar 

  32. Dethy J-M, Ackermann BL, Delatour C, Henion JD, Schultz GA. Demonstration of direct bioanalysis of drugs in plasma using nanoelectrospray infusion from a silicon chip coupled with tandem mass spectrometry. Anal Chem. 2003;75:805–11.

    Article  CAS  PubMed  Google Scholar 

  33. Clouser-Roche A, Johnson K, Fast D, Tang D. Beyond pass/fail: a procedure for evaluating the effect of carryover in bioanalytical LC/MS/MS methods. J Pharm Biomed Anal. 2008;47:146–55.

    Article  CAS  PubMed  Google Scholar 

  34. ANVISA Agência Nacional de Vigilância Sanitária, RESOLUÇÃO DA DIRETORIA COLEGIADA - RDC No 166, DE 24 DE JULHO DE 2017. Guia para validação de métodos analíticos - Julho, 2017. http://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/19194581/do1-2017-07-25-resolucao-rdc-n-166-de-24-de-julho-de-2017-19194412 (in Portuguese).

  35. INMETRO Instituto Nacional de Metrologia, Normalização e Qualidade Industrial, Orientação Sobre Validação de Métodos Analíticos - DOC - CGCRE - 008. 2018. http://www.inmetro.gov.br/Sidoq/Arquivos/CGCRE/DOQ/DOQ-CGCRE-8_07.pdf (in Portuguese).

  36. IUPAC International Union of Pure and Applied Chemistry. Harmonized guidelines for single- laboratory validation of methods of analysis. 2002;74:835–55 http://publications.iupac.org/pac/2002/pdf/7405x0835.pdf.

  37. FDA - Food and Drug Administration, Analytical procedures and methods validation for drugs and biologics. 2015. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/analytical-procedures-and-methods-validation-drugs-and-biologics

  38. Choi DY, Row KH. Theoretical analysis of chromatographic peak asymmetry and sharpness by the moment method using two peptides. Biotechnol Bioprocess Eng. 2004;9:495–9.

    Article  CAS  Google Scholar 

  39. CDER Center for Drug Evaluation and Research, Reviewer guidance: validation of chromatographic methods. 1994. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/reviewer-guidance-validation-chromatographic-methods.

  40. Shabir GA. Validation of high-performance liquid chromatography methods for pharmaceutical analysis. Understanding the differences and similarities between validation requirements of the US Food and Drug Administration, the US Pharmacopeia and the International Conference on Harmonization. J Chromatogr A. 2003;978:57–66.

  41. López-Serna R, Pérez S, Ginebreda A, Petrović M, Barceló D. Fully automated determination of 74 pharmaceuticals in environmental and waste waters by online solid phase extraction–liquid chromatography-electrospray–tandem mass spectrometry. Talanta. 2010;83:410–24.

    Article  PubMed  CAS  Google Scholar 

  42. Gros M, Rodríguez-Mozaz S, Barceló D. Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J Chromatogr A. 2013;1292:173–88.

    Article  CAS  PubMed  Google Scholar 

  43. Heuett NV, Ramirez CE, Fernandez A, Gardinali PR. Analysis of drugs of abuse by online SPE-LC high resolution mass spectrometry: communal assessment of consumption. Sci Total Environ. 2015;511:319–30.

    Article  CAS  PubMed  Google Scholar 

  44. Gracia-Lor E, Sancho JV, Hernández F. Multi-class determination of around 50 pharmaceuticals, including 26 antibiotics, in environmental and wastewater samples by ultra-high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2011;1218:2264–75.

    Article  CAS  PubMed  Google Scholar 

  45. EC - European Commission Document n° SANTE/11813/2017, Guidance document on analytical quality control and method validation procedures for pesticide residues analysis in food and feed. https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=727.

  46. Axel M, Ewelina K, Jenny-Maria B, Leif K. An online SPE LC-MS/MS method for the analysis of antibiotics in environmental water. Environ Sci Pollut Res. 2017;24:8692–9.

    Article  CAS  Google Scholar 

  47. Trenholm RA, Vanderford BJ, Snyder SA. On-line solid phase extraction LC–MS/MS analysis of pharmaceutical indicators in water: a green alternative to conventional methods. Talanta. 2017;79(5):1425–32.

    Article  CAS  Google Scholar 

  48. Scheurer M, et al. The challenge of analyzing beta-blocker drugs in sludge and wastewater. Anal Bioanal Chem. 2010;396(2):845–56.

    Article  CAS  PubMed  Google Scholar 

  49. Milhome MAL, Vieira SKV, Reges BM, Fernandes DR, Uchoa MLP, Pinheiro AI, et al. Multiresidue analysis and evaluation of the matrix effect on 20 pesticides in Brazilian maize (Zea mays L.) flour. J. Environ. Sci. Health Part B. 2019;54:892–7.

    Article  CAS  Google Scholar 

  50. Gonçalves ES, Rodrigues SV, Silva-Filho EV. The use of caffeine as a chemical marker of domestic wastewater contamination in surface waters: seasonal and spatial variations in Teresópolis, Brazil. Ambiente E Agua - Interdiscip J Appl Sci. 2017;12:192.

    Article  CAS  Google Scholar 

  51. Gros M, Petrović M, Barceló D. Development of a multi-residue analytical methodology based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters. Talanta. 2006;70:678–90.

    Article  CAS  PubMed  Google Scholar 

  52. Pedrouzo M, Reverté S, Borrull F, Pocurull E, Marcé RM. Pharmaceutical determination in surface and wastewaters using high-performance liquid chromatography-(electrospray)-mass spectrometry. J Sep Sci. 2007;30:297–303.

    Article  CAS  PubMed  Google Scholar 

  53. Biel-Maeso M, Baena-Nogueras RM, Corada-Fernández C, Lara-Martín PA. Occurrence, distribution and environmental risk of pharmaceutically active compounds (PhACs) in coastal and ocean waters from the Gulf of Cadiz (SW Spain). Sci Total Environ. 2018;612:649–59.

    Article  CAS  PubMed  Google Scholar 

  54. Campanha MB, Awan AT, de Sousa DNR, Grosseli GM, Mozeto AA, Fadini PS. A 3-year study on occurrence of emerging contaminants in an urban stream of São Paulo State of Southeast Brazil. Environ Sci Pollut Res. 2015;22:7936–47.

    Article  CAS  Google Scholar 

  55. Chen H, Jing L, Teng Y, Wang J. Characterization of antibiotics in a large-scale river system of China: occurrence pattern, spatiotemporal distribution and environmental risks. Sci Total Environ. 2018;618:409–18.

    Article  CAS  PubMed  Google Scholar 

  56. Paíga P, Santos LHMLM, Ramos S, Jorge S, Silva JG, Delerue-Matos C. Presence of pharmaceuticals in the Lis river (Portugal): sources, fate and seasonal variation. Sci Total Environ. 2016;573:164–77.

    Article  PubMed  CAS  Google Scholar 

  57. Gusmaroli L, Insa S, Petrovic M. Development of an online SPE-UHPLC-MS/MS method for the multiresidue analysis of the 17 compounds from the EU “Watch list”. Anal Bioanal Chem. 2018;410:4165–76.

    Article  CAS  PubMed  Google Scholar 

  58. Ferrer-Aguirre A, Romero-González R, Martínez Vidal JL, Frenich AG. Simple and quick determination of analgesics and other contaminants of emerging concern in environmental waters by on-line solid phase extraction coupled to liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2016;1446:27–33.

    Article  CAS  PubMed  Google Scholar 

  59. Chaves MJS, Barbosa SC, Malinowski MM, Volpato D, Castro IB, Franco TCRS, et al. Pharmaceuticals and personal care products in a Brazilian wetland of international importance: occurrence and environmental risk assessment. Sci Total Environ. 2020;734:139374.

    Article  CAS  PubMed  Google Scholar 

  60. de Almeida CAA, Oliveira MS, Mallmann CA, Martins AF. Determination of the psychoactive drugs carbamazepine and diazepam in hospital effluent and identification of their metabolites. Environ Sci Pollut Res. 2015;22:17192–201.

    Article  CAS  Google Scholar 

Download references

Funding

The authors received funding from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grants 16/03369-3, 18/11700-7, 18/22393-8, and INCT-DATREM 14/50945-4), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant 465571/2014-0), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, 88887136426/2017/00), and Instituto de Química – Universidade Estadual Paulista (IQ/UNESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Clairmont Feitosa de Lima Gomes.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marasco Júnior, C.A., da Silva, B.F., Lamarca, R.S. et al. Automated method to determine pharmaceutical compounds in wastewater using on-line solid-phase extraction coupled to LC-MS/MS. Anal Bioanal Chem 413, 5147–5160 (2021). https://doi.org/10.1007/s00216-021-03481-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03481-7

Keywords

Navigation