Skip to main content
Log in

A 3-year study on occurrence of emerging contaminants in an urban stream of São Paulo State of Southeast Brazil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This manuscript reports a 3-year study on occurrence of pharmaceuticals, hormones, and triclosan in surface waters of a central urban region of São Paulo State of Southeast Brazil (the Monjolinho River in São Carlos). Water samples collected once at every 2 months were pre-concentrated by solid-phase extraction (SPE) and analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The most frequently detected compounds in higher concentrations were caffeine, paracetamol, and atenolol (maximum concentrations 129,585, 30,421, and 8199 ng L−1, respectively), while hormones estrone and 17-β-estradiol were the least detected, in levels up to 14.8 ng L−1. There was an increasing trend in concentrations of most of the compounds along the river course, especially downstream of the river where there is discharge of both wastewater treatment plant effluent and raw sewage from a particular region of São Carlos city. Concentrations of contaminants were higher during dry periods as a result of decline in the water levels. Decrease in concentrations near the river mouth occurred to different extents for each compound. It was high for caffeine and atenolol, but was very low for carbamazepine and diclofenac. The present study reports the first data about the occurrence of some major emerging contaminants in the Monjolinho River. Besides its regional significance, this work may assist in composing a dataset for water contamination diagnosis focusing on emerging contaminants, both in the Brazilian as well as in the Global studies related to aquatic ecosystems. Such datasets can be helpful for making future public policies on water quality, since these compounds are not yet legally regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andreozzi R, Raffaele M, Nicklas P (2003) Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere 50:1319–1330. doi:10.1016/S0045-6535(02)00769-5

    Article  CAS  Google Scholar 

  • ANVISA - Brazilian Health Surveillance Agency (2003) Guia para validação de métodos analíticos e bioanalíticos, Resolução n. 899 de 29/05/2003 vol 2014

  • Aris AZ, Shamsuddin AS, Praveena SM (2014) Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. Envinron Int 69:104–119. doi:10.1016/j.envint.2014.04.011

    Article  CAS  Google Scholar 

  • Baker DR, Kasprzyk-Hordern B (2013) Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: new developments. Sci Total Environ 454–455:442–456. doi:10.1016/j.scitotenv.2013.03.043

    Article  Google Scholar 

  • Bendz D, Paxéus NA, Ginn TR, Loge FJ (2005) Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. J Hazard Mater 122:195–204. doi:10.1016/j.jhazmat.2005.03.012

    Article  CAS  Google Scholar 

  • Benotti MJ, Brownawell BJ (2009) Microbial degradation of pharmaceuticals in estuarine and coastal seawater. Environ Pollut 157:994–1002. doi:10.1016/j.envpol.2008.10.009

    Article  CAS  Google Scholar 

  • Bianchi J, Espindola ELG, Marin-Morales MA (2011) Genotoxicity and mutagenicity of water samples from the Monjolinho River (Brazil) after receiving untreated effluents. Ecotoxicol Environ Saf 74:826–833. doi:10.1016/j.ecoenv.2010.11.006

    Article  CAS  Google Scholar 

  • Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82:1518–1532. doi:10.1016/j.chemosphere.2010.11.018

    Article  CAS  Google Scholar 

  • Buerge IJ, Poiger T, Müller MD, Buser H-R (2003) Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ Sci Technol 37:691–700. doi:10.1021/es020125z

    Article  CAS  Google Scholar 

  • Caldas S, Bolzan C, Guilherme J, Silveira M, Escarrone A, Primel E (2013) Determination of pharmaceuticals, personal care products, and pesticides in surface and treated waters: method development and survey. Environ Sci Pollut Res 20:5855–5863. doi:10.1007/s11356-013-1650-9

    Article  CAS  Google Scholar 

  • Camacho-Muñoz D, Martín J, Santos JL, Aparicio I, Alonso E (2010) Occurrence, temporal evolution and risk assessment of pharmaceutically active compounds in Donana Park (Spain). J Hazard Mater 183:602–608

    Article  Google Scholar 

  • Campagna AF, Fracácio R, Rodrigues BK, Eler MN, Verani NF, Espíndola ELG (2008) Analyses of the sediment toxicity of Monjolinho River, São Carlos, São Paulo State, Brazil, using survey, growth and gill morphology of two fish species (Danio rerio and Poecilia reticulata). Braz Arch Biol Technol 51:193–201

    Article  CAS  Google Scholar 

  • Cassiano NM, Barreiro JC, Martins LRR, Oliveira RV, Cass QB (2009) Chromatographic methods validation for analysis of small molecules in biological matrices. Quim Nova 32:1021–1030

    Article  CAS  Google Scholar 

  • Chiba W, Passerini M, Baio J, Torres J, Tundisi J (2011) Seasonal study of contamination by metal in water and sediment in a sub-basin in the southeast of Brazil. Braz J Biol 71:833–843

    Article  Google Scholar 

  • Collado N (2014) Pharmaceuticals occurrence in a WWTP with significant industrial contribution and its input into the river system. Environ Pollut 185:202–212. doi:10.1016/j.envpol.2013.10.040

    Article  CAS  Google Scholar 

  • Conley JM, Symes SJ, Schorr MS, Richards SM (2008) Spatial and temporal analysis of pharmaceutical concentrations in the upper Tennessee River basin. Chemosphere 73:1178–1187. doi:10.1016/j.chemosphere.2008.07.062

    Article  CAS  Google Scholar 

  • CETESB - São Paulo State Environmental Agency (2012) Qualidade das Águas Superficiais no Estado de São Paulo. http://www.cetesb.sp.gov.br/userfiles/file/agua/aguas-superficiais/relatorio-aguas-superficiais-2012-substituido-em-060513.zip. Accessed May 2014

  • Daneshvar A (2012) Evaluating pharmaceuticals and caffeine as indicators of fecal contamination in drinking water sources of the Greater Montreal region. Chemosphere 88:131–139. doi:10.1016/j.chemosphere.2012.03.016

    Article  CAS  Google Scholar 

  • de Sousa DNR, Mozeto AA, Carneiro RL, Fadini PS (2014) Electrical conductivity and emerging contaminant as markers of surface freshwater contamination by wastewater. Sci Total Environ 484:19–26. doi:10.1016/j.scitotenv.2014.02.135

    Article  Google Scholar 

  • Deblonde T, Hartemann P (2013) Environmental impact of medical prescriptions: assessing the risks and hazards of persistence, bioaccumulation and toxicity of pharmaceuticals. Public Health 127:312–317. doi:10.1016/j.puhe.2013.01.026

    Article  CAS  Google Scholar 

  • Esteban S, Gorga M, Petrovic M, González-Alonso S, Barceló D, Valcárcel Y (2014) Analysis and occurrence of endocrine-disrupting compounds and estrogenic activity in the surface waters of Central Spain. Sci Total Environ 466–467:939–951. doi:10.1016/j.scitotenv.2013.07.101

    Article  Google Scholar 

  • EC - European Community (2002) Comission Decision 2002/657/EC vol 2002/657/EC Official Journal of the European Communities

  • EC - European Community (2013) Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013

  • Fatta-Kassinos D, Meric S, Nikolaou A (2011) Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal Bioanal Chem 399:251–275. doi:10.1007/s00216-010-4300-9

    Article  CAS  Google Scholar 

  • Fenech C, Nolan K, Rock L, Morrissey A (2013) An SPE LC–MS/MS method for the analysis of human and veterinary chemical markers within surface waters: an environmental forensics application. Environ Pollut 181:250–256. doi:10.1016/j.envpol.2013.06.012

    Article  CAS  Google Scholar 

  • Froehner S, Machado K, Falcão F, Monnich C, Bessa M (2011) Inputs of domestic and industrial sewage in Upper Iguassu, Brazil identified by emerging compounds. Water Air Soil Pollut 215:251–259. doi:10.1007/s11270-010-0475-0

    Article  CAS  Google Scholar 

  • Gasser G (2011) Evaluation of micropollutant tracers. II. Carbamazepine tracer for wastewater contamination from a nearby water recharge system and from non-specific sources. Desalination 273:398–404. doi:10.1016/j.desal.2011.01.058

    Article  CAS  Google Scholar 

  • Geist J (2011) Integrative freshwater ecology and biodiversity conservation. Ecol Indic 11:1507–1516. doi:10.1016/j.ecolind.2011.04.002

    Article  Google Scholar 

  • GWRC - Global Water Research Coalition (2008) Development of an international priority list of parmaceuticals relevant for fhe water cycle. http://edepot.wur.nl/138086. Accessed may 2014

  • Guérineau H (2014) Source tracking of leaky sewers: a novel approach combining fecal indicators in water and sediments. Water Res 58:50–61. doi:10.1016/j.watres.2014.03.057

    Article  Google Scholar 

  • Harwood JJ (2014) Molecular markers for identifying municipal, domestic and agricultural sources of organic matter in natural waters. Chemosphere 95:3–8. doi:10.1016/j.chemosphere.2013.09.104

    Article  CAS  Google Scholar 

  • IBGE Brazilian Institute of Geography and Statistics (2013) Cities - São Carlos

  • Jardim WF, Montagner CC, Pescara IC, Umbuzeiro GA, Di Dea Bergamasco AM, Eldridge ML, Sodré FF (2012) An integrated approach to evaluate emerging contaminants in drinking water. Sep Purif Technol 84:3–8. doi:10.1016/j.seppur.2011.06.020

    Article  CAS  Google Scholar 

  • Jjemba PK (2006) Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicol Environ Saf 63:113–130. doi:10.1016/j.ecoenv.2004.11.011

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res 42:3498–3518. doi:10.1016/j.watres.2008.04.026

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2009) The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res 43:363–380. doi:10.1016/j.watres.2008.10.047

    Article  CAS  Google Scholar 

  • Kosma CI, Lambropoulou DA, Albanis TA (2014) Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment. Sci Total Environ 466–467:421–438. doi:10.1016/j.scitotenv.2013.07.044

    Article  Google Scholar 

  • Kuster M, Azevedo DA, de Alda MJ L, Aquino Neto FR, Barceló D (2009) Analysis of phytoestrogens, progestogens and estrogens in environmental waters from Rio de Janeiro (Brazil). Envinron Int 35:997–1003. doi:10.1016/j.envint.2009.04.006

    Article  CAS  Google Scholar 

  • Lin AY, Reinhard M (2005) Photodegradation of common environmental pharmaceuticals and estrogens in river water. Environ Toxicol Chem 24:1303–1309

    Article  CAS  Google Scholar 

  • Lin AY-C, Plumlee MH, Reinhard M (2006) Natural attenuation of pharmaceuticals and alkylphenol polyethoxylate metabolites during river transport: photochemical and biological transformation. Environ Toxicol Chem 25:1458–1464. doi:10.1897/05-412R.1

    Article  CAS  Google Scholar 

  • Lin AY-C, Lin C-A, Tung H-H, Chary NS (2010) Potential for biodegradation and sorption of acetaminophen, caffeine, propranolol and acebutolol in lab-scale aqueous environments. J Hazard Mater 183:242–250. doi:10.1016/j.jhazmat.2010.07.017

    Article  CAS  Google Scholar 

  • Lindström A, Buerge IJ, Poiger T, Bergqvist P-A, Müller MD, Buser H-R (2002) Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ Sci Technol 36:2322–2329. doi:10.1021/es0114254

    Article  Google Scholar 

  • Loos R, Locoro G, Contini S (2010) Occurrence of polar organic contaminants in the dissolved water phase of the Danube River and its major tributaries using SPE-LC-MS2 analysis. Water Res 44:2325–2335. doi:10.1016/j.watres.2009.12.035

    Article  CAS  Google Scholar 

  • López-Roldán R, de Alda ML, Gros M, Petrovic M, Martín-Alonso J, Barceló D (2010) Advanced monitoring of pharmaceuticals and estrogens in the Llobregat River basin (Spain) by liquid chromatography–triple quadrupole-tandem mass spectrometry in combination with ultra performance liquid chromatography–time of flight-mass spectrometry. Chemosphere 80:1337–1344. doi:10.1016/j.chemosphere.2010.06.042

    Article  Google Scholar 

  • Madoux-Humery A-S, Dorner S, Sauvé S, Aboulfadl K, Galarneau M, Servais P, Prévost M (2013) Temporal variability of combined sewer overflow contaminants: evaluation of wastewater micropollutants as tracers of fecal contamination. Water Res 47:4370–4382. doi:10.1016/j.watres.2013.04.030

    Article  CAS  Google Scholar 

  • Madureira TV, Rocha MJ, Cruzeiro C, Rodrigues I, Monteiro RAF, Rocha E (2012) The toxicity potential of pharmaceuticals found in the Douro River estuary (Portugal): evaluation of impacts on fish liver, by histopathology, stereology, vitellogenin and CYP1A immunohistochemistry, after sub-acute exposures of the zebrafish model. Environ Toxicol Pharmacol 34:34–45. doi:10.1016/j.etap.2012.02.007

    Article  CAS  Google Scholar 

  • Martínez Bueno MJ, Uclés S, Hernando MD, Dávoli E, Fernández-Alba AR (2011) Evaluation of selected ubiquitous contaminants in the aquatic environment and their transformation products. a pilot study of their removal from a sewage treatment plant. Water Res 45:2331–2341. doi:10.1016/j.watres.2011.01.011

    Article  Google Scholar 

  • Martínez-Hernández V, Meffe R, Herrera S, Arranz E, de Bustamante I (2014) Sorption/desorption of non-hydrophobic and ionisable pharmaceutical and personal care products from reclaimed water onto/from a natural sediment. Sci Total Environ 472:273–281. doi:10.1016/j.scitotenv.2013.11.036

    Article  Google Scholar 

  • Moldovan Z (2006) Occurrences of pharmaceutical and personal care products as micropollutants in rivers from Romania. Chemosphere 64:1808–1817. doi:10.1016/j.chemosphere.2006.02.003

    Article  CAS  Google Scholar 

  • Montagner CC, Jardim WF (2011) Spatial and seasonal variations of pharmaceuticals and endocrine disruptors in the Atibaia River, São Paulo State (Brazil). J Braz Chem Soc 22:1452–1462

    Article  CAS  Google Scholar 

  • Moreira DS, Aquino SF, Afonso RJ, Santos EP, de Padua VL (2009) Occurrence of endocrine disrupting compounds in water sources of Belo Horizonte Metropolitan Area, Brazil. Environ Technol 30:1041–1049. doi:10.1080/09593330903052830

    Article  CAS  Google Scholar 

  • Orlando EF, Ellestad LE Sources, concentrations, and exposure effects of environmental gestagens on fish and other aquatic wildlife, with an emphasis on reproduction. Gen Comp Endocrinol. doi:http://dx.doi.org/10.1016/j.ygcen.2014.03.038

  • Osorio V (2014) Hydrological variation modulates pharmaceutical levels and biofilm responses in a Mediterranean river. Sci Total Environ 472:1052–1061. doi:10.1016/j.scitotenv.2013.11.069

    Article  CAS  Google Scholar 

  • Osorio V, Marcé R, Pérez S, Ginebreda A, Cortina JL, Barceló D (2012) Occurrence and modeling of pharmaceuticals on a sewage-impacted Mediterranean river and their dynamics under different hydrological conditions. Sci Total Environ 440:3–13. doi:10.1016/j.scitotenv.2012.08.040

    Article  CAS  Google Scholar 

  • Peng X, Yu Y, Tang C, Tan J, Huang Q, Wang Z (2008) Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci Total Environ 397:158–166. doi:10.1016/j.scitotenv.2008.02.059

    Article  CAS  Google Scholar 

  • Petersen K, Heiaas HH, Tollefsen KE (2014) Combined effects of pharmaceuticals, personal care products, biocides and organic contaminants on the growth of Skeletonema pseudocostatum. Aquat Toxicol 150:45–54. doi:10.1016/j.aquatox.2014.02.013

    Article  CAS  Google Scholar 

  • Petrović M, Skrbić B, Zivančev J, Ferrando-Climent L, Barcelo D (2014) Determination of 81 pharmaceutical drugs by high performance liquid chromatography coupled to mass spectrometry with hybrid triple quadrupole–linear ion trap in different types of water in Serbia. Sci Total Environ 468–469:415–428. doi:10.1016/j.scitotenv.2013.08.079

    Article  Google Scholar 

  • Printes LB, Fernandes MN, Espíndola ELG (2011) Laboratory measurements of biomarkers and individual performances in Chironomus xanthus to evaluate pesticide contamination of sediments in a river of southeastern Brazil. Ecotoxicol Environ Saf 74:424–430. doi:10.1016/j.ecoenv.2010.10.033

    Article  CAS  Google Scholar 

  • Ribeiro AR, Carvalho MF, Afonso CMM, Tiritan ME, Castro PML (2010) Microbial degradation of 17β-estradiol and 17α-ethinylestradiol followed by a validated HPLC-DAD method. J Environ Sci Health B 45:265–273. doi:10.1080/03601231003704523

    Article  CAS  Google Scholar 

  • Ricart M (2010) Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Aquat Toxicol 100:346–353. doi:10.1016/j.aquatox.2010.08.010

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077

    Article  CAS  Google Scholar 

  • Silva BF, Jelic A, López-Serna R, Mozeto AA, Petrovic M, Barceló D (2011) Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro river basin, Spain. Chemosphere 85:1331–1339. doi:10.1016/j.chemosphere.2011.07.051

    Article  Google Scholar 

  • Sodré FF, Pescara IC, Montagner CC, Jardim WF (2010) Assessing selected estrogens and xenoestrogens in Brazilian surface waters by liquid chromatography–tandem mass spectrometry. Microchem J 96:92–98. doi:10.1016/j.microc.2010.02.012

    Article  Google Scholar 

  • Sui Q, Huang J, Deng S, Yu G, Fan Q (2010) Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Res 44:417–426. doi:10.1016/j.watres.2009.07.010

    Article  CAS  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260. doi:10.1016/S0043-1354(98)00099-2

    Article  CAS  Google Scholar 

  • US-FDA - U.S. Food and Drug Administration (2001) Guidance for industry, bioanalytical method validation

  • Valcárcel Y, Alonso SG, Rodríguez-Gil JL, Maroto RR, Gil A, Catalá M (2011) Analysis of the presence of cardiovascular and analgesic/anti-inflammatory/antipyretic pharmaceuticals in river- and drinking-water of the Madrid Region in Spain. Chemosphere 82:1062–1071. doi:10.1016/j.chemosphere.2010.10.041

    Article  Google Scholar 

  • Vazquez-Roig P, Andreu V, Blasco C, Picó Y (2012) Risk assessment on the presence of pharmaceuticals in sediments, soils and waters of the Pego–Oliva Marshlands (Valencia, eastern Spain). Sci Total Environ 440:24–32. doi:10.1016/j.scitotenv.2012.08.036

    Article  CAS  Google Scholar 

  • Verlicchi P, Al Aukidy M, Jelic A, Petrović M, Barceló D (2014) Comparison of measured and predicted concentrations of selected pharmaceuticals in wastewater and surface water: a case study of a catchment area in the Po Valley (Italy). Sci Total Environ 470–471:844–854. doi:10.1016/j.scitotenv.2013.10.026

    Article  Google Scholar 

  • Vieno NM, Tuhkanen T, Kronberg L (2006) Analysis of neutral and basic pharmaceuticals in sewage treatment plants and in recipient rivers using solid phase extraction and liquid chromatography–tandem mass spectrometry detection. J Chromatogr A 1134:101–111. doi:10.1016/j.chroma.2006.08.077

    Article  CAS  Google Scholar 

  • Wang G et al (2012) Endocrine disrupting chemicals in New Orleans surface waters and Mississippi Sound sediments. J Environ Monit 14:1353–1364. doi:10.1039/c2em30095h

    Article  CAS  Google Scholar 

  • World Health Organization/UNICEF - (2013) Progress on sanitation and drinking water – update 2013. http://www.wssinfo.org/fileadmin/user_upload/resources/JMPreport2013.pdf. Accessed February 2014

  • Yamamoto H (2009) Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Water Res 43:351–362. doi:10.1016/j.watres.2008.10.039

    Article  CAS  Google Scholar 

  • Yan Z, Lu G, Liu J, Jin S (2012) An integrated assessment of estrogenic contamination and feminization risk in fish in Taihu Lake, China. Ecotoxicol Environ Saf 84:334–340. doi:10.1016/j.ecoenv.2012.08.010

    Article  CAS  Google Scholar 

  • Yu C-P, Chu K-H (2009) Occurrence of pharmaceuticals and personal care products along the West Prong Little Pigeon River in east Tennessee, USA. Chemosphere 75:1281–1286. doi:10.1016/j.chemosphere.2009.03.043

    Article  CAS  Google Scholar 

  • Zhang Y, Geißen S-U, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73:1151–1161. doi:10.1016/j.chemosphere.2008.07.086

    Article  CAS  Google Scholar 

  • Zhao J-L, Ying G-G, Wang L, Yang J-F, Yang X-B, Yang L-H, Li X (2009) Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography–negative chemical ionization–mass spectrometry. Sci Total Environ 407:962–974. doi:10.1016/j.scitotenv.2008.09.048

    Article  CAS  Google Scholar 

  • Zuccato E, Castiglioni S, Fanelli R (2005) Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment. J Hazard Mater 122:205–209. doi:10.1016/j.jhazmat.2005.03.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Coordination of Improvement of Higher Education Personal (CAPES, research project n° 3039/2010), the National Council of Scientific and Tecnological Development (CNPq, grants #140771/2012-3 and 403580/2013-7), the São Paulo Research Foundation (FAPESP, processes 2012/14403-7 and 10/01731-0), and ANP-Petrobrás (project 0050.0043180.08.4; agreement 4600295977) for the financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro S. Fadini.

Additional information

Responsible editor: Hongwen Sun

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campanha, M.B., Awan, A.T., de Sousa, D.N.R. et al. A 3-year study on occurrence of emerging contaminants in an urban stream of São Paulo State of Southeast Brazil. Environ Sci Pollut Res 22, 7936–7947 (2015). https://doi.org/10.1007/s11356-014-3929-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3929-x

Keywords

Navigation