Skip to main content
Log in

Phospholipidomics of peripheral blood mononuclear cells (PBMCs): the tricky case of children with autism spectrum disorder (ASD) and their healthy siblings

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is a broad and heterogeneous group of neurological developmental disorders characterized by impaired social interaction and communication, restricted and repetitive behavioural patterns, and altered sensory processing. Currently, no reliable ASD molecular biomarkers are available. Since immune dysregulation has been supposed to be related with ASD onset and dyslipidaemia has been recognized as an early symptom of biological perturbation, lipid extracts from peripheral blood mononuclear cells (PBMCs), consisting primarily of lymphocytes (T cells, B cells, and NK cells) and monocytes, of 38 children with ASD and their non-autistic siblings were investigated by hydrophilic interaction liquid chromatography (HILIC) coupled with electrospray ionization and Fourier-transform mass spectrometry (ESI-FTMS). Performances of two freeware software for data extraction and processing were compared with acquired reliable data regardless of the used informatics. A reduction of variables from 1460 by the untargeted XCMS to 324 by the semi-untargeted Alex123 software was attained. All-ion fragmentation (AIF) MS scans along with Alex123 software were successfully applied to obtain information related to fatty acyl chain composition of six glycerophospholipid classes occurring in PBMC. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were explored to verify the occurrence of significant differences in the lipid pool composition of ASD children compared with 36 healthy siblings. After rigorous statistical validation, we conclude that phospholipids extracted from PBMC of children affected by ASD do not exhibit diagnostic biomarkers. Yet interindividual variability comes forth from this study as the dominant effect in keeping with the existing phenotypic and etiological heterogeneity among ASD individuals.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. American Psychiatric Association. Neurodevelopmental disorders. Diagn Stat Man Ment Disord. 2013. https://doi.org/10.1176/appi.books.9780890425596.dsm01.

  2. Fombonne É. Epidemiological surveys of autism and other pervasive developmental disorders: an update. J Autism Dev Disord. 2003;33:365–82. https://doi.org/10.1023/A:1025054610557.

    Article  PubMed  Google Scholar 

  3. Daniels AM, Mandell DS. Explaining differences in age at autism spectrum disorder diagnosis: a critical review. Autism. 2014;18:583–97. https://doi.org/10.1177/1362361313480277.

    Article  PubMed  Google Scholar 

  4. Charman T (2015) Variability in neurodevelopmental disorders: evidence from autism spectrum disorders. In: Neurodev. Disord. Res. challenges Solut. Psychology Press, pp 117–140

  5. Shen L, Liu XK, Zhang H, Lin J, Feng C, Iqbal J. Biomarkers in autism spectrum disorders: current progress. Clin Chim Acta. 2020;502:41–54. https://doi.org/10.1016/j.cca.2019.12.009.

    Article  CAS  PubMed  Google Scholar 

  6. Nguyen RL, Medvedeva YV, Ayyagari TE, Schmunk G, Gargus JJ. Intracellular calcium dysregulation in autism spectrum disorder: an analysis of converging organelle signaling pathways. Biochim Biophys Acta, Mol Cell Res. 2018;1865:1718–32. https://doi.org/10.1016/j.bbamcr.2018.08.003.

    Article  CAS  Google Scholar 

  7. Palmieri L, Papaleo V, Porcelli V, Scarcia P, Gaita L, Sacco R, et al. Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1. Mol Psychiatry. 2010;15:38–52. https://doi.org/10.1038/mp.2008.63.

    Article  CAS  PubMed  Google Scholar 

  8. Palmieri L, Persico AM. Mitochondrial dysfunction in autism spectrum disorders: cause or effect? Biochim Biophys Acta Bioenerg. 2010;1797:1130–7. https://doi.org/10.1016/j.bbabio.2010.04.018.

    Article  CAS  Google Scholar 

  9. Rose S, Niyazov DM, Rossignol DA, Goldenthal M, Kahler SG, Frye RE. Clinical and molecular characteristics of mitochondrial dysfunction in autism spectrum disorder. Mol Diagnosis Ther. 2018;22:571–93. https://doi.org/10.1007/s40291-018-0352-x.

    Article  CAS  Google Scholar 

  10. Ashwood P, Wills S, Van de Water J. The immune response in autism: a new frontier for autism research. J Leukoc Biol. 2006;80:1–15. https://doi.org/10.1189/jlb.1205707.

    Article  CAS  PubMed  Google Scholar 

  11. Napolioni V, Persico AM, Porcelli V, Palmieri L. The mitochondrial aspartate/glutamate carrier AGC1 and calcium homeostasis: physiological links and abnormalities in autism. Mol Neurobiol. 2011;44:83–92. https://doi.org/10.1007/s12035-011-8192-2.

    Article  CAS  PubMed  Google Scholar 

  12. Sahin M, Sur M. Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Science. 2015;350:aab3897–905. https://doi.org/10.1126/science.aab3897.

    Article  CAS  PubMed  Google Scholar 

  13. Gładysz D, Krzywdzińska A, Hozyasz KK. Immune abnormalities in autism spectrum disorder—could they hold promise for causative treatment? Mol Neurobiol. 2018;55:6387–435. https://doi.org/10.1007/s12035-017-0822-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mead J, Ashwood P. Evidence supporting an altered immune response in ASD. Immunol Lett. 2015;163:49–55. https://doi.org/10.1016/j.imlet.2014.11.006.

    Article  CAS  PubMed  Google Scholar 

  15. Warren RP, Margaretten NC, Pace NC, Foster A. Immune abnormalities in patients with autism. J Autism Dev Disord. 1986;16:189–97. https://doi.org/10.1007/BF01531729.

    Article  CAS  PubMed  Google Scholar 

  16. Glatt SJ, Tsuang MT, Winn M, Chandler SD, Collins M, Lopez L, et al. Blood-based gene expression signatures of infants and toddlers with autism. J Am Acad Child Adolesc Psychiatry. 2012;51:934. https://doi.org/10.1016/j.jaac.2012.07.007.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shen L, Feng C, Zhang K, Chen Y, Gao Y, Ke J, et al. Proteomics study of peripheral blood mononuclear cells (PBMCs) in autistic children. Front Cell Neurosci. 2019;13:105. https://doi.org/10.3389/fncel.2019.00105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Losito I, Patruno R, Conte E, Cataldi TRI, Megli FM, Palmisano F. Phospholipidomics of human blood microparticles. Anal Chem. 2013;85:6405–13. https://doi.org/10.1021/ac400829r.

    Article  CAS  PubMed  Google Scholar 

  19. Cífková E, Holčapek M, Lísa M. Nontargeted lipidomic characterization of porcine organs using hydrophilic interaction liquid chromatography and off-line two-dimensional liquid chromatography-electrospray ionization mass spectrometry. Lipids. 2013;48:915–28. https://doi.org/10.1007/s11745-013-3820-4.

    Article  CAS  PubMed  Google Scholar 

  20. Ventura G, Bianco M, Calvano CD, Losito I, Cataldi TRI. HILIC-ESI-FTMS with all ion fragmentation (AIF) scans as a tool for fast lipidome investigations. Molecules. 2020;25:2310. https://doi.org/10.3390/molecules25102310.

    Article  CAS  PubMed Central  Google Scholar 

  21. Tsugawa H, Ikeda K, Arita M. The importance of bioinformatics for connecting data-driven lipidomics and biological insights. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862:762–5. https://doi.org/10.1016/j.bbalip.2017.05.006.

    Article  CAS  PubMed  Google Scholar 

  22. Forsberg EM, Huan T, Rinehart D, Benton HP, Warth B, Hilmers B, et al. Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS online. Nat Protoc. 2018;13:633–51. https://doi.org/10.1038/nprot.2017.151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Husen P, Tarasov K, Katafiasz M, Sokol E, Vogt J, Baumgart J, et al. Analysis of lipid experiments (ALEX): a software framework for analysis of high-resolution shotgun lipidomics data. PLoS One. 2013;8:e79736. https://doi.org/10.1371/journal.pone.0079736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ellis SR, Paine MRL, Eijkel GB, Pauling JK, Husen P, Jervelund MW, et al. Automated, parallel mass spectrometry imaging and structural identification of lipids. Nat Methods. 2018;15:515–8. https://doi.org/10.1038/s41592-018-0010-6.

    Article  CAS  PubMed  Google Scholar 

  25. Liebisch G, Vizcaíno JA, Köfeler H, Trötzmüller M, Griffiths WJ, Schmitz G, et al. Shorthand notation for lipid structures derived from mass spectrometry. J Lipid Res. 2013;54:1523–30. https://doi.org/10.1194/jlr.M033506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liebisch G, Ekroos K, Hermansson M, Ejsing CS. Reporting of lipidomics data should be standardized. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862:747–51. https://doi.org/10.1016/j.bbalip.2017.02.013.

    Article  CAS  PubMed  Google Scholar 

  27. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7. https://doi.org/10.1139/o59-099.

    Article  CAS  PubMed  Google Scholar 

  28. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-Mcintyre S, Anderson N, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6:1060–83. https://doi.org/10.1038/nprot.2011.335.

    Article  CAS  PubMed  Google Scholar 

  29. Kamleh MA, Ebbels TMD, Spagou K, Masson P, Want EJ. Optimizing the use of quality control samples for signal drift correction in large-scale urine metabolic profiling studies. Anal Chem. 2012;84:2670–7. https://doi.org/10.1021/ac202733q.

    Article  CAS  PubMed  Google Scholar 

  30. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

    Article  Google Scholar 

  31. Granafei S, Azzone P, Spinelli VAVA, Losito I, Palmisano F, Cataldi TRITRI. Hydrophilic interaction and reversed phase mixed-mode liquid chromatography coupled to high resolution tandem mass spectrometry for polar lipids analysis. J Chromatogr A. 2016;1477:47–55. https://doi.org/10.1016/j.chroma.2016.11.048.

    Article  CAS  PubMed  Google Scholar 

  32. Granafei S, Losito I, Palmisano F, Cataldi TRI. Identification of isobaric lyso-phosphatidylcholines in lipid extracts of gilthead sea bream (Sparus aurata) fillets by hydrophilic interaction liquid chromatography coupled to high-resolution Fourier-transform mass spectrometry. Anal Bioanal Chem. 2015;407:6391–404. https://doi.org/10.1007/s00216-015-8671-9.

    Article  CAS  PubMed  Google Scholar 

  33. Calvano CD, Sardanelli AM, Ventura G, Glaciale M, Savino L, Losito I, et al. Development and use of advanced mass spectrometry techniques for the characterization of cellular and mitochondrial lipidomic profiling in control fibroblasts and Parkinson’s disease patients. Trends Pharm Biomed Anal. 2018;1:1–10. https://doi.org/10.15761/TPBA.1000102.

    Article  Google Scholar 

  34. Calvano CD, Ventura G, Sardanelli AM, Savino L, Losito I, De Michele G, et al. Searching for potential lipid biomarkers of parkinson’s disease in parkin-mutant human skin fibroblasts by HILIC-ESI-MS/MS: preliminary findings. Int J Mol Sci. 2019;20:3341. https://doi.org/10.3390/ijms20133341.

    Article  CAS  PubMed Central  Google Scholar 

  35. Patti GJ, Tautenhahn R, Siuzdak G. Meta-analysis of untargeted metabolomic data from multiple profiling experiments. Nat Protoc. 2012;7:508–16. https://doi.org/10.1038/nprot.2011.454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Libiseller G, Dvorzak M, Kleb U, Gander E, Eisenberg T, Madeo F, et al. IPO: a tool for automated optimization of XCMS parameters. BMC Bioinf. 2015;16:1–10. https://doi.org/10.1186/s12859-015-0562-8.

    Article  CAS  Google Scholar 

  37. Albóniga OE, González O, Alonso RM, Xu Y, Goodacre R. Optimization of XCMS parameters for LC–MS metabolomics: an assessment of automated versus manual tuning and its effect on the final results. Metabolomics. 2020;16:14. https://doi.org/10.1007/s11306-020-1636-9.

    Article  CAS  PubMed  Google Scholar 

  38. Kuhl C, Tautenhahn R, Böttcher C, Larson TR, Neumann S. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal Chem. 2012;84:283–9. https://doi.org/10.1021/ac202450g.

    Article  CAS  PubMed  Google Scholar 

  39. Han X (2016) Factors affecting accurate quantification of lipids. In: Wiley (ed) Lipidomics Compr. Mass Spectrom. Lipids. John Wiley & Sons, Inc, Hoboken, pp 335–352.

  40. Dunn WB, Wilson ID, Nicholls AW, Broadhurst D. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis. 2012;4:2249–64. https://doi.org/10.4155/bio.12.204.

    Article  CAS  PubMed  Google Scholar 

  41. Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson ID, Lewis MR, et al. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics. 2018;14:0. https://doi.org/10.1007/s11306-018-1367-3.

    Article  CAS  Google Scholar 

  42. Bartel J, Krumsiek J, Theis FJ. Statistical methods for the analysis of high-throughput metabolomics data. Comput Struct Biotechnol J. 2013;4:e201301009. https://doi.org/10.5936/csbj.201301009.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Brereton RG (2003) Chemometrics. doi: https://doi.org/10.1002/0470863242.

  44. Bohm HV, Stewart MG. Brief report: on the concordance percentages for autistic spectrum disorder of twins. J Autism Dev Disord. 2009;39:806–8. https://doi.org/10.1007/s10803-008-0683-2.

    Article  PubMed  Google Scholar 

  45. Gromski PS, Muhamadali H, Ellis DI, Xu Y, Correa E, Turner ML, et al. A tutorial review: metabolomics and partial least squares-discriminant analysis - a marriage of convenience or a shotgun wedding. Anal Chim Acta. 2015;879:10–23. https://doi.org/10.1016/j.aca.2015.02.012.

    Article  CAS  PubMed  Google Scholar 

  46. Chauhan V, Chauhan A, Cohen IL, Brown WT, Sheikh A. Alteration in amino-glycerophospholipids levels in the plasma of children with autism: a potential biochemical diagnostic marker. Life Sci. 2004;74:1635–43. https://doi.org/10.1016/j.lfs.2003.08.024.

    Article  CAS  PubMed  Google Scholar 

  47. Murphy R (2015) Tandem mass spectrometry of lipids

  48. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3:211–21. https://doi.org/10.1007/s11306-007-0082-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Storey JD. A direct approach to false discovery rates. J R Stat Soc Ser B (Stat Methodol). 2002;64:479–98. https://doi.org/10.1111/1467-9868.00346.

    Article  Google Scholar 

  50. Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov. 2005;4:594–610. https://doi.org/10.1038/nrd1776.

    Article  CAS  PubMed  Google Scholar 

  51. Harayama T, Riezman H. Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol. 2018;19:281–96. https://doi.org/10.1038/nrm.2017.138.

    Article  CAS  PubMed  Google Scholar 

  52. Han X. Lipids and lipidomics. In: Lipidomics. Hoboken: John Wiley & Sons, Inc; 2016. p. 1–20.

    Chapter  Google Scholar 

  53. Calvano CD, Palmisano F, Cataldi TRI. Understanding neurodegenerative disorders by MS-based lipidomics. Bioanalysis. 2018;10:787–90. https://doi.org/10.4155/bio-2018-0023.

    Article  CAS  PubMed  Google Scholar 

  54. Yang K, Han X. Accurate quantification of lipid species by electrospray ionization mass spectrometry - meets a key challenge in lipidomics. Metabolites. 2011;1:21–40. https://doi.org/10.3390/metabo1010021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wiest MM, German JB, Harvey DJ, Watkins SM, Hertz-Picciotto I. Plasma fatty acid profiles in autism: a case-control study. Prostaglandins Leukot Essent Fat Acids. 2009;80:221–7. https://doi.org/10.1016/j.plefa.2009.01.007.

    Article  CAS  Google Scholar 

  56. Brigandi SA, Shao H, Qian SY, Shen Y, Wu BL, Kang JX. Autistic children exhibit decreased levels of essential fatty acids in red blood cells. Int J Mol Sci. 2015;16:10061–76. https://doi.org/10.3390/ijms160510061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Richardson AJ, Ross MA. Fatty acid metabolism in neurodevelopmental disorder: a new perspective on associations between attention-deficit/hyperactivity disorder, dyslexia, dyspraxia and the autistic spectrum. Prostaglandins Leukot Essent Fat Acids. 2000;63:1–9. https://doi.org/10.1054/plef.2000.0184.

    Article  CAS  Google Scholar 

  58. El-Ansary A, Chirumbolo S, Bhat RS, Dadar M, Ibrahim EM, Bjørklund G. The role of lipidomics in autism spectrum disorder. Mol Diagnosis Ther. 2020;24:31–48. https://doi.org/10.1007/s40291-019-00430-0.

    Article  CAS  Google Scholar 

  59. Vancassel S, Durand G, Barthélémy C, Lejeune B, Martineau J, Guilloteau D, et al. Plasma fatty acid levels in autistic children. Prostaglandins Leukot Essent Fat Acids. 2001;65:1–7. https://doi.org/10.1054/plef.2001.0281.

    Article  CAS  Google Scholar 

  60. Bell JG, MacKinlay EE, Dick JR, MacDonald DJ, Boyle RM, Glen ACA (2004) Essential fatty acids and phospholipase A2 in autistic spectrum disorders. In: Prostaglandins Leukot. Essent. Fat. Acids. pp 201–204

  61. Bell JG, Miller D, MacDonald DJ, MacKinlay EE, Dick JR, Cheseldine S, et al. The fatty acid compositions of erythrocyte and plasma polar lipids in children with autism, developmental delay or typically developing controls and the effect of fish oil intake. Br J Nutr. 2010;103:1160–7. https://doi.org/10.1017/S0007114509992881.

    Article  CAS  PubMed  Google Scholar 

  62. Bu B, Ashwood P, Harvey D, King IB, Van de Water J, Jin LW. Fatty acid compositions of red blood cell phospholipids in children with autism. Prostaglandins Leukot Essent Fat Acids. 2006;74:215–21. https://doi.org/10.1016/j.plefa.2006.02.001.

    Article  CAS  Google Scholar 

  63. El-Ansary AK, Ben Bacha AG, Al-Ayahdi LY. Plasma fatty acids as diagnostic markers in autistic patients from Saudi Arabia. Lipids Health Dis. 2011;10:62. https://doi.org/10.1186/1476-511X-10-62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Howsmon DP, Adams JB, Kruger U, Geis E, Gehn E, Hahn J. Erythrocyte fatty acid profiles in children are not predictive of autism spectrum disorder status: a case control study. Biomark Res. 2018;6:12. https://doi.org/10.1186/s40364-018-0125-z.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Neubronner J, Schuchardt JP, Kressel G, Merkel M, Von Schacky C, Hahn A. Enhanced increase of omega-3 index in response to long-term n-3 fatty acid supplementation from triacylglycerides versus ethyl esters. Eur J Clin Nutr. 2011;65:247–54. https://doi.org/10.1038/ejcn.2010.239.

    Article  CAS  PubMed  Google Scholar 

  66. Al-Farsi YM, Waly MI, Deth RC, Al-Sharbati MM, Al-Shafaee M, Al-Farsi O, et al. Impact of nutrition on serum levels of docosahexaenoic acid among Omani children with autism. Nutrition. 2013;29:1142–6. https://doi.org/10.1016/j.nut.2013.03.009.

    Article  CAS  PubMed  Google Scholar 

  67. De Rubeis S, Buxbaum JD. Genetics and genomics of autism spectrum disorder: embracing complexity. Hum Mol Genet. 2015;24:R24–31. https://doi.org/10.1093/hmg/ddv273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A. The familial risk of autism. JAMA. 2014;311:1770. https://doi.org/10.1001/jama.2014.4144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ng M, de Montigny JG, Ofner M, Do M. Environmental factors associated with autism spectrum disorder: a scoping review for the years 2003–2013. Health Promot Chronic Dis Prev Can. 2017;37:1–23. https://doi.org/10.24095/hpcdp.37.1.01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Calder PC. The relationship between the fatty acid composition of immune cells and their function. Prostaglandins Leukot Essent Fat Acids. 2008;79:101–8. https://doi.org/10.1016/j.plefa.2008.09.016.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the following projects: (i) PONa3_00395/1 ‘BIOSCIENZE & SALUTE (B&H)’ and (ii) SIR 2014, Identification and Characterization of Biomarkers for Autism Spectrum Disorder of ‘Ministero per l’Istruzione, l’Università e la Ricerca’ (MIUR). G.V. during his Ph.D. period abroad carried out part of this work in Manchester at the Institute of Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso R. I. Cataldi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1027 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ventura, G., Calvano, C.D., Porcelli, V. et al. Phospholipidomics of peripheral blood mononuclear cells (PBMCs): the tricky case of children with autism spectrum disorder (ASD) and their healthy siblings. Anal Bioanal Chem 412, 6859–6874 (2020). https://doi.org/10.1007/s00216-020-02817-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02817-z

Keywords

Navigation