Skip to main content
Log in

Profiling of quercetin glycosides and acyl glycosides in sun-dried peperoni di Senise peppers (Capsicum annuum L.) by a combination of LC-ESI(-)-MS/MS and polarity prediction in reversed-phase separations

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Interest in targeted profiling of quercetin glycoconjugates occurring in edible foodstuffs continues to expand because of their recognized beneficial health effects. Quercetin derivatives encompass several thousands of chemically distinguishable compounds, among which there are several compounds with different glycosylations and acylations. Since reference standards and dedicated databases are not available, the mass spectrometric identification of quercetin glycoconjugates is challenging. A targeted liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) was applied for screening quercetin glycoconjugates in edible peperoni di Senise peppers (Capsicum annuum L.), protected by the European Union with the mark PGI (i.e., Protected Geographical Indication), and cultivated in Basilicata (Southern Italy). Chromatographic separation was accomplished by reversed-phase liquid chromatography (RPLC) using water/acetonitrile as the mobile phase and detection was performed on a linear ion trap mass spectrometer fitted with an electrospray ionization (ESI) source operating in negative ion mode. A correlation between experimental RP chromatographic retention time and those predicted by partition coefficients (log P) along with MS/MS data and an in-house developed database (named QUEdb) provided deep coverage for sixteen quercetin glycoconjugates. Among them, eleven quercetin glycoconjugates were already described in the literature and five were reported for the first time. These last acyl glycosidic quercetin derivatives were tentatively identified as quercetin-(galloyl-rhamnoside)-hexoside, [C34H33O20] at m/z 761.1; quercetin-(sinapoyl-hexoside)-rhamnoside, [C38H39O20] at m/z 815.4; quercetin-(galloyl-caffeoyl-hexoside)-rhamnoside, [C43H39O23] at m/z 923.0; quercetin-(feruloyl-hexoside)-rhamnoside, [C37H37O19] at m/z 785.1; and quercetin-(succinyl-rhamnoside)-rhamnoside, [C31H33O18] at m/z 693.1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lesjak M, Beara I, Simin N, Pintać D, Majkić T, Bekvalac K, et al. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J Funct Foods. 2018;40:68–75.

    Article  CAS  Google Scholar 

  2. Rauf A, Imran M, Khan IA, ur-Rehman M, Gilani SA, Mehmood Z, Mubarak MS. Anticancer potential of quercetin: a comprehensive review. Phyther Res 2018;32.11: 2109–2130.

  3. Materska M. Quercetin and its derivatives: chemical structure and bioactivity-a review. Polish J Food Nutr Sci. 2008;58(4).

  4. Cai T, Guo ZQ, Xu XY, Wu ZJ. Recent (2000–2015) developments in the analysis of minor unknown natural products based on characteristic fragment information using LC-MS. Mass Spectrom Rev. 2018;37(2):202–16.

    Article  PubMed  CAS  Google Scholar 

  5. Pinheiro P, Justino G. Structural analysis of flavonoids and related compounds - a review of spectroscopic applications. Phytochem A Glob Perspect Their Role Nutr Health. 2012:33–56.

  6. Abad-García B, Berrueta LA, Garmón-Lobato S, Gallo B, Vicente F. A general analytical strategy for the characterization of phenolic compounds in fruit juices by high-performance liquid chromatography with diode array detection coupled to electrospray ionization and triple quadrupole mass spectrometry. J Chromatogr A. 2009;1216(28):5398–415.

    Article  PubMed  CAS  Google Scholar 

  7. Cuyckens F, Claeys M. Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom. 2004;39(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  8. Bianco G, Agerbirk N, Losito I, Cataldi TR. Acylated glucosinolates with diverse acyl groups investigated by high resolution mass spectrometry and infrared multiphoton dissociation. Phytochemistry. 2014;100:92–102.

    Article  PubMed  CAS  Google Scholar 

  9. Murota K, Terao J. Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Arch Biochem Biophys. 2003;417(1):12–7.

    Article  PubMed  CAS  Google Scholar 

  10. Cataldi TR, Bianco G. Capillary electrophoresis of tropane alkaloids and glycoalkaloids occurring in Solanaceae plants. Capillary Electrophor. 2008:171–203.

  11. Patel KN, Patel JK, Patel MP, Rajput GC, Patel HA. Introduction to hyphenated techniques and their applications in pharmacy. Pharm Methods. 2010;1(1):2–13.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Blunder M, Orthaber A, Bauer R, Bucar F, Kunert O. Efficient identification of flavones, flavanones and their glycosides in routine analysis via off-line combination of sensitive NMR and HPLC experiments. Food Chem. 2017;218:600–9.

    Article  PubMed  CAS  Google Scholar 

  13. Prashanth SN, Bianco G, Cataldi TR, Iacobellis NS. Acylhomoserine lactone production by bacteria associated with cultivated mushrooms. J Agric Food Chem. 2011;59(21):11461–72.

    Article  PubMed  CAS  Google Scholar 

  14. Cataldi TR, Bianco G, Abate S, Losito I. Identification of unsaturated N-acylhomoserine lactones in bacterial isolates of Rhodobacter sphaeroides by liquid chromatography coupled to electrospray ionization-hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom. 2011;25(13):1817–26.

    Article  PubMed  CAS  Google Scholar 

  15. Pascale R, Bianco G, Cataldi TR, Kopplin PS, Bosco F, Vignola L, et al. Mass spectrometry-based phytochemical screening for hypoglycemic activity of Fagioli di Sarconi beans (Phaseolus vulgaris L.). Food Chem. 2018;242:497–504.

    Article  PubMed  CAS  Google Scholar 

  16. Bianco G, Buchicchio A, Cataldi TR. Structural characterization of major soyasaponins in traditional cultivars of Fagioli di Sarconi beans investigated by high-resolution tandem mass spectrometry. Anal Bioanal Chem. 2015;407(21):6381–9.

    Article  PubMed  CAS  Google Scholar 

  17. Bianco G, Pascale R, Carbone CF, Acquavia MA, Cataldi TR, Schmitt-Kopplin P, et al. Determination of soyasaponins in Fagioli di Sarconi beans (Phaseolus vulgaris L.) by LC-ESI-FTICR-MS and evaluation of their hypoglycemic activity. Anal Bioanal Chem. 2018;410(5):1561–9.

    Article  PubMed  CAS  Google Scholar 

  18. Lucci P, Saurina J, Núñez O. Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food. Trends Anal Chem. 2017;88:1–24.

    Article  CAS  Google Scholar 

  19. Wishart DS. FooDB: the food database. 2018; http://foodb.ca/. Accessed 2 Mar 2019.

  20. Laurino S, Grossi G, Pucci P, Flagiello A, Bufo SA, Bianco G, et al. Identification of major Toxoneuron nigriceps venom proteins using an integrated transcriptomic/proteomic approach. Insect Biochem Mol Biol. 2016;76:49–61.

    Article  PubMed  CAS  Google Scholar 

  21. Pascale R, Grossi G, Cruciani G, Mecca G, Santoro D, Calace RS, et al. Sequence protein identification by randomized sequence database and transcriptome mass spectrometry (SPIDER-TMS): from manual to automatic application of a ‘de novo sequencing’ approach. Eur J Mass Spectrom. 2016;22(4):193–8.

    Article  CAS  Google Scholar 

  22. Bhagwat S, Haytowitz DB, Holden JM. USDA database for the flavonoid content of selected foods: U.S. Dep. Agriculture; 2014.

  23. Giacomoni F, Fillatre Y, Rothwell J, Eisner R, Cesaire D, Pujos-Guillot E, Manach C. PhytoHub version 1.0: a food metabolome database dedicated to dietary phytochemicals. 2014; http://phytohub.eu/. Accessed 2 March 2019.

  24. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, et al. MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom. 2010;45(7):703–14.

    Article  PubMed  CAS  Google Scholar 

  25. Neveu V, Perez-Jiménez J, Vos F, Crespy V, Du Chaffaut L, Mennen L, Knox C, Eisner R, Cruz J, Wishart D, Scalbert A. Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database 2010; http://phenol-explorer.eu/. Accessed 2 Mar 2019.

  26. Akimoto N, Ara T, Nakajima D, Suda K, Ikeda C, Takahashi S, et al. FlavonoidSearch: a system for comprehensive flavonoid annotation by mass spectrometry. Sci Rep. 2017;7(1):1243.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Cerrato A, Cannazza G, Capriotti AL, Citti C, La Barbera G, Laganà A, et al. A new software-assisted analytical workflow based on high-resolution mass spectrometry for the systematic study of phenolic compounds in complex matrices. Talanta. 2020;209:120573.

    Article  PubMed  CAS  Google Scholar 

  28. Fekete A, Frommberger M, Rothballer M, Li X, Englmann M, Fekete J, et al. Identification of bacterial N-acylhomoserine lactones (AHLs) with a combination of ultra-performance liquid chromatography (UPLC), ultra-high-resolution mass spectrometry, and in-situ biosensors. Anal Bioanal Chem. 2007;387(2):455–67.

    Article  PubMed  CAS  Google Scholar 

  29. Wahyuni Y, Ballester AR, Tikunov Y, de Vos RCH, Pelgrom KTB, Maharijaya A, et al. Metabolomics and molecular marker analysis to explore pepper (Capsicum sp.) biodiversity. Metabolomics. 2013;9(1):130–44.

    Article  PubMed  CAS  Google Scholar 

  30. Fabre N, Rustan I, De Hoffmann E, Quetin-Leclercq J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J Am Soc Mass Spectrom. 2001;12(6):707–15.

    Article  PubMed  CAS  Google Scholar 

  31. Ma YL, Li QM, Van Den Heuvel H, Claeys M. Characterization of flavone and flavonol aglycones by collision-induced dissociation tandem mass spectrometry. Rapid Commun Mass Spectrom. 1997;11(12):1357–64.

    Article  CAS  Google Scholar 

  32. Domon B, Costello CE. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J. 1988;5(4):397–409.

    Article  CAS  Google Scholar 

  33. Eugster PJ, Boccard J, Debrus B, Bréant L, Wolfender JL, Martel S, et al. Retention time prediction for dereplication of natural products (CxHyOz) in LC-MS metabolite profiling. Phytochemistry. 2014;108:196–207.

    Article  PubMed  CAS  Google Scholar 

  34. Podunavac-Kuzmanović SO, Jevrić LR, Tepić AN, Šumić Z. Reversed-phase HPLC retention data in correlation studies with lipophilicity molecular descriptors of carotenoids. Hemijska Indust. 2013;67(6):933–40.

    Article  Google Scholar 

  35. Ablajan K, Abliz Z, Shang XY, He JM, Zhang RP, Shi JG. Structural characterization of flavonol 3,7-di-O-glycosides and determination of the glycosylation position by using negative ion electrospray ionization tandem mass spectrometry. J Mass Spectrom. 2006;41(3):352–60.

    Article  PubMed  CAS  Google Scholar 

  36. Jeong WY, Jin JS, Cho YA, Lee JH, Park S, Jeong SW, et al. Determination of polyphenols in three Capsicum annuum L. (bell pepper) varieties using high-performance liquid chromatography-tandem mass spectrometry: their contribution to overall antioxidant and anticancer activity. J Sep Sci. 2011;34(21):2967–74.

    Article  PubMed  CAS  Google Scholar 

  37. Marín A, Ferreres F, Tomás-Barberán FA, Gil MI. Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum annuum L.). J Agric Food Chem. 2004;52(12):3861–9.

    Article  PubMed  CAS  Google Scholar 

  38. Morales-Soto A, Gómez-Caravaca AM, García-Salas P, Segura-Carretero A, Fernández-Gutiérrez A. High-performance liquid chromatography coupled to diode array and electrospray time-of-flight mass spectrometry detectors for a comprehensive characterization of phenolic and other polar compounds in three pepper (Capsicum annuum L.) samples. Food Res Int. 2013;51.2:977–84.

    Article  CAS  Google Scholar 

  39. Gosetti F, Mazzucco E, Zampieri D, Gennaro MC. Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A. 2010;1217(25):3929–37.

    Article  PubMed  CAS  Google Scholar 

  40. Vallejo F, Tomás-Barberán FA, Ferreres F. Characterisation of flavonols in broccoli (Brassica oleracea L. var. italica) by liquid chromatography-UV diode-array detection-electrospray ionisation mass spectrometry. J Chromatogr A. 2004;1054.1–2:181–93.

    Article  CAS  Google Scholar 

  41. Rauter AP, Ennis M, Hellwich KH, Herold BJ, Horton D, Moss GP, et al. Nomenclature of flavonoids (IUPAC recommendations 2017). Pure Appl Chem. 2018;90(9):1429–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank ALSIA for providing the analyzed sun-dried peppers (Capsicum annuum L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliana Bianco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 869 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pascale, R., Acquavia, M.A., Cataldi, T.R.I. et al. Profiling of quercetin glycosides and acyl glycosides in sun-dried peperoni di Senise peppers (Capsicum annuum L.) by a combination of LC-ESI(-)-MS/MS and polarity prediction in reversed-phase separations. Anal Bioanal Chem 412, 3005–3015 (2020). https://doi.org/10.1007/s00216-020-02547-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02547-2

Keywords

Navigation