Skip to main content
Log in

Determination of soyasaponins in Fagioli di Sarconi beans (Phaseolus vulgaris L.) by LC-ESI-FTICR-MS and evaluation of their hypoglycemic activity

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Soyasaponins are oleanene-type triterpenoid saponins, naturally occurring in many edible plants that have attracted a great deal of attention for their role in preventing chronic diseases. The aim of this study was to establish the distribution and the content of soyasaponins in 21 ecotypes of Fagioli di Sarconi beans (Phaseolus vulgaris, Leguminosae). High-performance reversed-phase liquid chromatography (RPLC) with positive electrospray ionization (ESI(+)) and Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) in conjunction with infrared multiphoton dissociation (IRMPD) was applied for the unambiguous identification of soyasaponins Ba (m/z 959.5213, [C48H79O19]+), Bb (m/z 943.5273, [C48H79O18]+), Bd (m/z 957.5122, [C48H77O19]+), and Be (m/z 941.5166, [C48H77O18]+), which are the only commercially available reference standards. In addition, the several diagnostic product ions generated by IRMPD in the ICR-MS cell allowed us the putative identification of soyasaponins Bb' (m/z 797.4680, [C42H69O14]+), αg (m/z 1085.5544, [C54H85O22]+), βg (m/z 1069.5600, [C54H85O21]+), and γg (m/z 923.5009, [C48H75O17]+), establishing thus their membership in the soyasaponin group. Quantitative and semiquantitative analysis of identified soyasaponins were also performed by RPLC-ESI(+) FTICR-MS; the total concentration levels were found ranging from 83.6 ± 9.3 to 767 ± 37 mg/kg. In vitro hypoglycemic outcomes of four soyasaponin standards were evaluated; significant inhibitory activities were obtained with IC50 values ranging from 1.5 ± 0.1 to 2.3 ± 0.2 μg/mL and 12.0 ± 1.1 to 29.4 ± 1.4 μg/mL for α-glucosidase and α-amylase, respectively. This study represents the first detailed investigation on the antidiabetic activity of bioactive constituents found in Fagioli di Sarconi beans.

The first detailed RPLC-ESI(+) FTICR-MS investigation of the qualitative and semiquantitative profile of soyasaponins, occurring in 21 ecotypes of Fagioli di Sarconi beans (P. vulgaris L.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Piergiovanni AR, Cerbino D, Della Gatta C. Diversity in seed quality traits of common bean populations from Basilicata (Southern Italy). Plant Breed. 2000;119:513–6. https://doi.org/10.1046/j.1439-0523.2000.00531.x.

    Article  Google Scholar 

  2. Limongelli G, Laghetti G, Perrino P, Piergiovanni AR. Variation of seed storage proteins in landraces of common bean (Phaseolus vulgaris L) from Basilicata, southern Italy. Euphytica. 1996;92:393–9.

    Article  CAS  Google Scholar 

  3. Reynoso-Camacho R, Ramos-Gomez M, Loarca-Pina G. Bioactive components in common beans (Phaseolus vulgaris L.). Adv Agric Food Biotechnol. 2006;661:217–36.

    Google Scholar 

  4. Hayat I, Ahmad A, Masud T, Ahmed A, Bashir S. Nutritional and health perspectives of beans (Phaseolus vulgaris L.): an overview. Crit Rev Food Sci Nutr. 2014;54:580–92. https://doi.org/10.1080/10408398.2011.596639.

    Article  CAS  Google Scholar 

  5. Güçlü-Ustündağ O, Mazza G. Saponins: properties, applications and processing. Crit Rev Food Sci Nutr. 2007;47:231–58. https://doi.org/10.1080/10408390600698197.

    Article  Google Scholar 

  6. Kitagawa I, Hori K, Taniyama T, Zhou JL, Yoshikawa M. Saponin and sapogenol. XLVII. On the constituents of the roots of Glycyrrhiza uralensis Fischer from northeastern China. (1). Licorice-saponins A3, B2, and C2. Chem Pharm Bull. 1993;41:43–9.

    Article  CAS  Google Scholar 

  7. Shiraiwa M, Harada K, Okubo K. Composition and structure of “group B saponin” in soybean seed. Agric Biol Chem. 1991;55:911–7. https://doi.org/10.1080/00021369.1991.10870686.

    CAS  Google Scholar 

  8. Kudou S, Tonomura M, Tsukamoto C, Shimoyamada M, Uchida T, Okubo K. Isolation and structural elucidation of the major genuine soybean saponin. Biosci Biotechnol Biochem. 1992;56:142–3.

    Article  CAS  Google Scholar 

  9. Kudou S, Tonomura M, Tsukamoto C, Uchida T, Sakabe T, Tamura N, et al. Isolation and structural elucidation of DDMP-conjugated soyasaponins as genuine saponins from soybean seeds. Biosci Biotechnol Biochem. 1993;57:546–50. https://doi.org/10.1271/bbb.57.546.

    Article  CAS  Google Scholar 

  10. Singh B, Singh JP, Singh N, Kaur A. Saponins in pulses and their health promoting activities: a review. Food Chem. 2017;233:540–9. https://doi.org/10.1016/j.foodchem.2017.04.161.

    Article  CAS  Google Scholar 

  11. Francis G, Kerem Z, Makkar HPS, Becker K. The biological action of saponins in animal systems: a review. Br J Nutr. 2002;88:587–605. https://doi.org/10.1079/BJN2002725.

    Article  CAS  Google Scholar 

  12. Augustin JM, Kuzina V, Andersen SB, Bak S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry. 2011;72:435–57. https://doi.org/10.1016/j.phytochem.2011.01.015.

    Article  CAS  Google Scholar 

  13. Samaddar S, Balwanth RK, Sah SK, Chandrasekhar KB. Protective effect of saponin of Momordica cymbalaria Fenzl on high-glucose induced neuropathy in NB-41A3 mouse neuroblastoma cells. Int J Pharm Pharm Sci. 2016;8:229–35.

    CAS  Google Scholar 

  14. Zheng T, Shu G, Yang Z, Mo S, Zhao Y, Mei Z. Antidiabetic effect of total saponins from Entada phaseoloides (L.) Merr. in type 2 diabetic rats. J Ethnopharmacol. 2012;139:814–21. https://doi.org/10.1016/j.jep.2011.12.025.

    Article  CAS  Google Scholar 

  15. Hu C, Shi J, Quan S, Cui B, Kleessen S, Nikoloski Z, et al. Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics. Sci Rep. 2014;4:5067. https://doi.org/10.1038/srep05067.

    Article  CAS  Google Scholar 

  16. Berhow MA, Suk BK, Vermillion KE, Duval SM. Complete quantification of group A and group B soyasaponins in soybeans. J Agric Food Chem. 2006;54:2035–44. https://doi.org/10.1021/jf053072o.

    Article  CAS  Google Scholar 

  17. Jin M, Yang Y, Su B, Ren Q. Rapid quantification and characterization of soyasaponins by high-performance liquid chromatography coupled with electrospray mass spectrometry. J Chromatogr A. 2006;1108:31–7. https://doi.org/10.1016/j.chroma.2005.12.099.

    Article  CAS  Google Scholar 

  18. Hu J, Lee SO, Hendrich S, Murphy PA. Quantification of the group B soyasaponins by high-performance liquid chromatography. J Agric Food Chem. 2002;50:2587–94. https://doi.org/10.1021/jf0114740.

    Article  CAS  Google Scholar 

  19. Bianco G, Buchicchio A, Cataldi TRI. Structural characterization of major soyasaponins in traditional cultivars of Fagioli di Sarconi beans investigated by high-resolution tandem mass spectrometry. Anal Bioanal Chem. 2015;407:6381–9. https://doi.org/10.1007/s00216-015-8810-3.

    Article  CAS  Google Scholar 

  20. Cataldi TRI, Bianco G, Abate S. Accurate mass analysis of N-acyl-homoserine-lactones and cognate lactone-opened compounds in bacterial isolates of Pseudomonas aeruginosa PAO1 by LC-ESI-LTQ-FTICR-MS. J Mass Spectrom. 2009;44:182–92. https://doi.org/10.1002/jms.1479.

    Article  CAS  Google Scholar 

  21. Bianco G, Abate S, Labella C, Cataldi TRI. Identification and fragmentation pathways of caffeine metabolites in urine samples via liquid chromatography with positive electrospray ionization coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spec. Rapid Commun Mass Spectrom. 2009;23:1065–74. https://doi.org/10.1002/rcm.3969.

    Article  CAS  Google Scholar 

  22. Pascale R, Bianco G, Cataldi TRI, Kopplin P-S, Bosco F, Vignola L, et al. Mass spectrometry-based phytochemical screening for hypoglycemic activity of Fagioli di Sarconi beans (Phaseolus vulgaris L.). Food Chem. 2018;242:497–504. https://doi.org/10.1016/j.foodchem.2017.09.091.

    Article  CAS  Google Scholar 

  23. Huhman DV, Sumner LW. Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry. 2002;59:347–60. https://doi.org/10.1016/S0031-9422(01)00432-0.

    Article  CAS  Google Scholar 

  24. Baiocchi C, Medana C, Giancotti V, Aigotti R, Dal Bello F, Massolino C, et al. Qualitative characterization of Desmodium adscendens constituents by high performance liquid chromatography-diode array ultraviolet-electrospray ionization multistage mass spectrometry. Eur J Mass Spectrom. 2013;19:1–15. https://doi.org/10.1255/ejms.1214.

    Article  CAS  Google Scholar 

  25. Kurosawa Y, Takahara H, Shiraiwa M. UDP-glucuronic acid:soyasapogenol glucuronosyltransferase involved in saponin biosynthesis in germinating soybean seeds. Planta. 2002;215:620–9. https://doi.org/10.1007/s00425-002-0781-x.

    Article  CAS  Google Scholar 

  26. Shibuya M, Nishimura K, Yasuyama N, Ebizuka Y. Identification and characterization of glycosyltransferases involved in the biosynthesis of soyasaponin I in Glycine max. FEBS Lett. 2010;584:2258–64. https://doi.org/10.1016/j.febslet.2010.03.037.

    Article  CAS  Google Scholar 

  27. Rupasinghe HPV, Jackson CJC, Poysa V, Di Berardo C, Bewley JD, Jenkinson J. Soyasapogenol A and B distribution in soybean (Glycine max L. Merr.) in relation to seed physiology, genetic variability, and growing location. J Agric Food Chem. 2003;51:5888–94. https://doi.org/10.1021/jf0343736.

    Article  CAS  Google Scholar 

  28. Chitisankul WT, Shimada K, Omizu Y, Uemoto Y, Varanyanond W, Tsukamoto C. Mechanism of DDMP-saponin degradation and maltol production in soymilk preparation. LWT - Food Sci Technol. 2015;64:197–204. https://doi.org/10.1016/j.lwt.2015.05.023.

    Article  CAS  Google Scholar 

  29. Rathahao-Paris E, Alves S, Junot C, Tabet J-C. High resolution mass spectrometry for structural identification of metabolites in metabolomics. Metabolomics. 2016;12:10. https://doi.org/10.1007/s11306-015-0882-8.

    Article  Google Scholar 

  30. Pascale R, Caivano M, Buchicchio A, Mancini IM, Bianco G, Caniani D. Validation of an analytical method for simultaneous high-precision measurements of greenhouse gas emissions from wastewater treatment plants using a gas chromatography-barrier discharge detector system. J Chromatogr A. 2017;1480:62–9. https://doi.org/10.1016/j.chroma.2016.11.024.

    Article  CAS  Google Scholar 

  31. Nicholas P, Tan S, Hewavitharana A. Strategies for the detection and elimination of matrix effects in quantitative LC–MS analysis. Lcgc. 2014;32:54–64.

    Google Scholar 

  32. Kawai H, Kuroyanagi M, Ueno A, Satake M. Studies on the saponins of Lonicera japonica THUNB. Chem Pharm Bull (Tokyo). 1988;36:4769–75. https://doi.org/10.1248/cpb.36.4769.

    Article  CAS  Google Scholar 

  33. Gu L, Tao G, Gu W, Prior RL. Determination of soyasaponins in soy with LC-MS following structural unification by partial alkaline degradation. J Agric Food Chem. 2002;50:6951–9. https://doi.org/10.1021/jf0257300.

    Article  CAS  Google Scholar 

  34. Kumar V, Prakash O, Kumar S, Narwal S. α-glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacogn Rev. 2011;5:19. https://doi.org/10.4103/0973-7847.79096.

    Article  CAS  Google Scholar 

  35. Shori AB. Screening of antidiabetic and antioxidant activities of medicinal plants. J Integr Med. 2015;13:297–305. https://doi.org/10.1016/S2095-4964(15)60193-5.

    Article  Google Scholar 

  36. Wu H, Xu B. Inhibitory effects of onion against α-glucosidase activity and its correlation with phenolic antioxidants. Int J Food Prop. 2014;17:599–609. https://doi.org/10.1080/10942912.2012.654562.

    Article  CAS  Google Scholar 

  37. Apostolidis E, Kwon YI, Shetty K. Potential of cranberry-based herbal synergies for diabetes and hypertension management. Asia Pac J Clin Nutr. 2006;15:433–41.

    CAS  Google Scholar 

  38. Kwon YI, Apostolidis E, Shetty K. Inhibitory potential of wine and tea against α-amylase and α-glucosidase for management of hyperglycemia linked to type 2 diabetes. J Food Biochem. 2008;32:15–31. https://doi.org/10.1111/j.1745-4514.2007.00165.x.

    Article  CAS  Google Scholar 

  39. Apostolidis E, Lee CM. In vitro potential of Ascophyllum nodosum phenolic antioxidant-mediated α-glucosidase and α-amylase inhibition. J Food Sci. 2010; https://doi.org/10.1111/j.1750-3841.2010.01544.x.

  40. Taylor R. Interpretation of the correlation coefficient: a basic review. J Diagnostic Med Sonogr. 1990;6:35–9. https://doi.org/10.1177/875647939000600106.

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed by using the instrumental facilities (EU Project no. 2915/12) of Dipartimento di Scienze of Università degli Studi della Basilicata. Consorzio di Sarconi (PZ, Italy) is acknowledged for assistance in providing bean samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliana Bianco.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianco, G., Pascale, R., Carbone, C.F. et al. Determination of soyasaponins in Fagioli di Sarconi beans (Phaseolus vulgaris L.) by LC-ESI-FTICR-MS and evaluation of their hypoglycemic activity. Anal Bioanal Chem 410, 1561–1569 (2018). https://doi.org/10.1007/s00216-017-0806-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0806-8

Keywords

Navigation