Huggett JF, O’Grady J, Bustin S. qPCR, dPCR, NGS – a journey. Biomol Detect Quantif. 2015;3:A1–5.
PubMed
PubMed Central
Article
Google Scholar
Mackay IM. Real-time PCR in the microbiology laboratory. Clin Microbiol Infect. 2004;10:190–212.
CAS
PubMed
Article
PubMed Central
Google Scholar
Rossen JWA, Friedrich AW, Moran-Gilad J. Practical issues in implementing whole-genome-sequencing in routine diagnostic microbiology. Clin Microbiol Infect. 2018;24:355–60.
CAS
PubMed
Article
PubMed Central
Google Scholar
Courts C, Pfaffl MW, Sauer E, Parson W. Pleading for adherence to the MIQE-guidelines when reporting quantitative PCR data in forensic genetic research. Forensic Sci Int Genet. 2019;42:e21–e4.
CAS
PubMed
Article
PubMed Central
Google Scholar
Rådström P, Knutsson R, Wolffs P, Lövenklev M, Löfström C. Pre-PCR processing: strategies to generate PCR-compatible samples. Mol Biotechnol. 2004;26:133–46.
PubMed
Article
PubMed Central
Google Scholar
Hedman J, Rådström P. Overcoming inhibition in real-time diagnostic PCR. In: Wilks M, editor. PCR detection of microbial pathogens. Totowa: Methods in Molecular Biology (Methods and Protocols): Humana Press; 2013. p. 17–48.
Chapter
Google Scholar
Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–50.
CAS
PubMed
Article
PubMed Central
Google Scholar
Rothwell PJ, Waksman G. Structure and mechanism of DNA polymerases. Adv Protein Chem. 2005;71:401–40.
CAS
PubMed
Article
PubMed Central
Google Scholar
Navarro E, Serrano-Heras G, Castano MJ, Solera J. Real-time PCR detection chemistry. Clin Chim Acta. 2015;439:231–50.
CAS
PubMed
Article
PubMed Central
Google Scholar
Ruijter JM, Lorenz P, Tuomi JM, Hecker M, van den Hoff MJB. Fluorescent-increase kinetics of different fluorescent reporters used for qPCR depend on monitoring chemistry, targeted sequence, type of DNA input and PCR efficiency. Mikrochim Acta. 2014;181:1689–96.
CAS
PubMed
PubMed Central
Article
Google Scholar
Butler JM. Forensic DNA typing: biology, technology, and genetics of STR markers. 2nd ed. Burlington: Elsevier Academic Press; 2005.
Google Scholar
Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci. 1977;74:5463–7.
CAS
PubMed
Article
PubMed Central
Google Scholar
Fuller CW, Middendorf LR, Benner SA, Church GM, Harris T, Huang X, et al. The challenges of sequencing by synthesis. Nat Biotechnol. 2009;27:1013–23.
CAS
PubMed
Article
PubMed Central
Google Scholar
Ju J, Kim DH, Bi L, Meng Q, Bai X, Li Z, et al. Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc Natl Acad Sci. 2006;103:19635.
CAS
PubMed
Article
PubMed Central
Google Scholar
Sidstedt M, Jansson L, Nilsson E, Noppa L, Forsman M, Rådström P, et al. Humic substances cause fluorescence inhibition in real-time polymerase chain reaction. Anal Biochem. 2015;487:30–7.
CAS
PubMed
Article
PubMed Central
Google Scholar
Sidstedt M, Romsos EL, Hedell R, Ansell R, Steffen CR, Vallone PM, et al. Accurate digital polymerase chain reaction quantification of challenging samples applying inhibitor-tolerant DNA polymerases. Anal Chem. 2017;89:1642–9.
CAS
PubMed
Article
PubMed Central
Google Scholar
Lakowicz JR. Principles of fluorescence spectroscopy. 3rd ed. Boston: Springer; 2006.
Book
Google Scholar
Hindson C, Chevillet J, Briggs H, Gallichotte E, Ruf I, Hindson B, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods. 2013;10:1003–5.
CAS
PubMed
PubMed Central
Article
Google Scholar
Sedlak RH, Kuypers J, Jerome KR. A multiplexed droplet digital PCR assay performs better than qPCR on inhibition prone samples. Diagn Microbiol Infect Dis. 2014;80:285–6.
CAS
PubMed
Article
PubMed Central
Google Scholar
Pavšič J, Devonshire A, Blejec A, Foy CA, Van Heuverswyn F, Jones GM, et al. Inter-laboratory assessment of different digital PCR platforms for quantification of human cytomegalovirus DNA. Anal Bioanal Chem. 2017:1–14.
Liu L, Li Y, Li S, Hu N, He Y, Pong R, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;2012:251364.
PubMed
PubMed Central
Google Scholar
Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol. 2012;30:434–9.
CAS
PubMed
Article
PubMed Central
Google Scholar
Akkari Y, Smith T, Westfall J, Lupo S. Implementation of cancer next-generation sequencing testing in a community hospital. Mol Case Stud. 2019;5.
de Knijff P. From next generation sequencing to now generation sequencing in forensics. Forensic Sci Int Genet. 2019;38:175–80.
PubMed
Article
CAS
PubMed Central
Google Scholar
Alonso A, Barrio PA, Müller P, Köcher S, Berger B, Martin P, et al. Current state-of-art of STR sequencing in forensic genetics. Electrophoresis. 2018;39:2655–68.
CAS
PubMed
Article
PubMed Central
Google Scholar
Bruijns B, Tiggelaar R, Gardeniers H. Massively parallel sequencing techniques for forensics: a review. Electrophoresis. 2018;39:2642–54.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456.
Pruvost M, Geigl E-M. Real-time quantitative PCR to assess the authenticity of ancient DNA amplification. J Archaeol Sci. 2004;31:1191–7.
Article
Google Scholar
Huggett J, Novak T, Garson J, Green C, Morris-Jones S, Miller R, et al. Differential susceptibility of PCR reactions to inhibitors: an important and unrecognised phenomenon. BMC Res Notes. 2008;1:70.
PubMed
PubMed Central
Article
CAS
Google Scholar
Hedman J, Knutsson R, Ansell R, Rådström P, Rasmusson B. Pre-PCR processing in bioterrorism preparedness: improved diagnostic capabilities for laboratory response networks. Biosecur Bioterror. 2013;11:87–101.
Article
Google Scholar
van Oorschot RAH, Verdon TJ, Ballantyne KN. Collection of samples for DNA analysis. In: Goodwin W, editor. Forensic DNA typing protocols Methods in molecular biology. New York: Humana Press; 2016. p. 1–12.
Google Scholar
Bruijns BB, Tiggelaar RM, Gardeniers H. The extraction and recovery efficiency of pure DNA for different types of swabs. J Forensic Sci. 2018;63:1492–9.
CAS
PubMed
Article
PubMed Central
Google Scholar
Thom KA, Howard T, Sembajwe S, Harris AD, Strassle P, Caffo BS, et al. Comparison of swab and sponge methodologies for identification of Acinetobacter baumannii from the hospital environment. J Clin Microbiol. 2012;50:2140–1.
PubMed
PubMed Central
Article
Google Scholar
Probst A, Facius R, Wirth R, Moissl-Eichinger C. Validation of a nylon-flocked-swab protocol for efficient recovery of bacterial spores from smooth and rough surfaces. Appl Environ Microbiol. 2010;76:5148–58.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hedman J, Lövenklev M, Wolffs P, Löfström C, Knutsson R, Rådström P. Pre-PCR processing strategies. In: Nolan T, Bustin S, editors. PCR technology: CRC Press; 2013. p. 3–18.
Walsh PS, Metzger DA, Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques. 1991;10:506–13.
CAS
PubMed
PubMed Central
Google Scholar
Hindiyeh M, Mor O, Pando R, Mannasse B, Kabat A, Assraf-Zarfati H, et al. Comparison of the new fully automated extraction platform eMAG to the MagNA PURE 96 and the well-established easyMAG for detection of common human respiratory viruses. PLoS One. 2019;14:e0211079.
CAS
PubMed
PubMed Central
Article
Google Scholar
Marshall PL, King JL, Lawrence NP, Lazarev A, Gross VS, Budowle B. Pressure cycling technology (PCT) reduces effects of inhibitors of the PCR. Int J Legal Med. 2013;127:321–33.
PubMed
Article
PubMed Central
Google Scholar
Schmedes S, Marshall P, King JL, Budowle B. Effective removal of co-purified inhibitors from extracted DNA samples using synchronous coefficient of drag alteration (SCODA) technology. Int J Legal Med. 2013;127:749–55.
PubMed
Article
PubMed Central
Google Scholar
Yin J, Suo Y, Zou Z, Sun J, Zhang S, Wang B, et al. Integrated microfluidic systems with sample preparation and nucleic acid amplification. Lab Chip. 2019;19:2769–85.
CAS
PubMed
Article
PubMed Central
Google Scholar
Miller DN, Bryant JE, Madsen EL, Ghiorse WC. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol. 1999;65:4715–24.
CAS
PubMed
PubMed Central
Article
Google Scholar
Norén L, Hedell R, Ansell R, Hedman J. Purification of crime scene DNA extracts using centrifugal filter devices. Investig Genet. 2013;4:1–8.
Article
CAS
Google Scholar
Cavanaugh SE, Bathrick AS. Direct PCR amplification of forensic touch and other challenging DNA samples: a review. Forensic Sci Int Genet. 2018;32:40–9.
CAS
PubMed
Article
PubMed Central
Google Scholar
Verheij S, Harteveld J, Sijen T. A protocol for direct and rapid multiplex PCR amplification on forensically relevant samples. Forensic Sci Int Genet. 2012;6:167–75.
CAS
PubMed
Article
PubMed Central
Google Scholar
Kuperus WR, Hummel KH, Roney JM, Szakacs NA, Macmillan CE, Wickenheiser RA, et al. Crime scene links through DNA evidence: the practical experience from Saskatchewan casework. Can Soc Forensic Sci J. 2003;36:19–28.
Article
Google Scholar
Kim JI, Buckau G, Li GH, Duschner H, Psarros N. Characterization of humic and fulvic-acids from Gorleben groundwater. Fresenius J Anal Chem. 1990;338:245–52.
CAS
Article
Google Scholar
Stevenson FJ. Humus chemistry: genesis, composition, reactions. New York: Wiley; 1982.
Google Scholar
Scheffer F, Schachtschabel P, Blume H-P, Brümmer GW, Hartge KH, Schwertmann U. In: Scheffer F, Schachtschabel P, editors. Zusammensetzung und eigenschaften der huminstoffe. Stuttgart: Lehrbuch der Bodenkunde: Ferdinand Enke Verlag; 1970.
Google Scholar
Zipper H, Buta C, Lämmle K, Brunner H, Bernhagen J, Vitzthum F. Mechanisms underlying the impact of humic acids on DNA quantification by SYBR Green I and consequences for the analysis of soils and aquatic sediments. Nucleic Acids Res. 2003;31:e39.
PubMed
PubMed Central
Article
CAS
Google Scholar
Albers CN, Banta GT, Jacobsen OS, Hansen PE. Characterization and structural modelling of humic substances in field soil displaying significant differences from previously proposed structures. Eur J Soil Sci. 2008;59:693–705.
CAS
Article
Google Scholar
Christl I, Knicker H, Kögel-Knabner I, Kretzschmar R. Chemical heterogeneity of humic substances: characterization of size fractions obtained by hollow-fibre ultrafiltration. Eur J Soil Sci. 2000;51:617–25.
CAS
Article
Google Scholar
Albers CN, Jensen A, Bælum J, Jacobsen CS. Inhibition of DNA polymerases used in Q-PCR by structurally different soil-derived humic substances. Geomicrobiol J. 2013;30:675–81.
CAS
Article
Google Scholar
Sutlovic D, Gamulin S, Definis-Gojanovic M, Gugic D, Andjelinovic S. Interaction of humic acids with human DNA: proposed mechanisms and kinetics. Electrophoresis. 2008;29:1467–72.
CAS
PubMed
Article
PubMed Central
Google Scholar
Tebbe CC, Vahjen W. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant-DNA from bacteria and a yeast. Appl Environ Microbiol. 1993;59:2657–65.
CAS
PubMed
PubMed Central
Article
Google Scholar
Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walther P. Chapter 22: Stem cells and tissue renewal. Mol Biol Cell. 6 ed: Garland Science; 2015.
Abu Al-Soud W, Jönsson LJ, Rådström P. Identification and characterization of immunoglobulin G in blood as a major inhibitor of diagnostic PCR. J Clin Microbiol. 2000;38:345–50.
Article
Google Scholar
Abu Al-Soud W, Rådström P. Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol. 2001;39:485–93.
Article
Google Scholar
Akane A, Matsubara K, Nakamura H, Takahashi S, Kimura K. Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification. J Forensic Sci. 1994;39:362–72.
CAS
PubMed
Article
PubMed Central
Google Scholar
Walker FM, Hsieh K. Advances in directly amplifying nucleic acids from complex samples. Biosensors. 2019;9.
Schrader C, Schielke A, Ellerbroek L, Johne R. PCR inhibitors–occurrence, properties and removal. J Appl Microbiol. 2012;113:1014–26.
CAS
PubMed
Article
PubMed Central
Google Scholar
de Franchis R, Cross NC, Foulkes NS, Cox TM. A potent inhibitor of Taq polymerase copurifies with human genomic DNA. Nucleic Acids Res. 1988;16:10355.
PubMed
PubMed Central
Article
Google Scholar
Sidstedt M, Hedman J, Romsos EL, Waitara L, Wadsö L, Steffen CR, et al. Inhibition mechanisms of hemoglobin, immunoglobulin G, and whole blood in digital and real-time PCR. Anal Bioanal Chem. 2018;410:2569–83.
CAS
PubMed
PubMed Central
Article
Google Scholar
Green RL, Lagace RE, Oldroyd NJ, Hennessy LK, Mulero JJ. Developmental validation of the AmpFlSTR NGM SElect PCR Amplification Kit: a next-generation STR multiplex with the SE33 locus. Forensic Sci Int Genet. 2013;7:41–51.
CAS
PubMed
Article
PubMed Central
Google Scholar
Kraemer M, Prochnow A, Bussmann M, Scherer M, Peist R, Steffen C. Developmental validation of QIAGEN Investigator 24plex QS Kit and Investigator 24plex GO! Kit: two 6-dye multiplex assays for the extended CODIS core loci. Forensic Sci Int Genet. 2017;29:9–20.
CAS
PubMed
Article
PubMed Central
Google Scholar
McLaren RS, Bourdeau-Heller J, Patel J, Thompson JM, Pagram J, Loake T, et al. Developmental validation of the PowerPlex ESI 16/17 Fast and PowerPlex ESX 16/17 Fast Systems. Forensic Sci Int Genet. 2014;13:195–205.
CAS
PubMed
Article
PubMed Central
Google Scholar
Tsai YL, Olson BH. Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl Environ Microbiol. 1992;58:2292–5.
CAS
PubMed
PubMed Central
Article
Google Scholar
Opel KL, Chung D, McCord BR. A study of PCR inhibition mechanisms using real time PCR. J Forensic Sci. 2010;55:25–33.
CAS
PubMed
Article
PubMed Central
Google Scholar
Sutlovic D, Gojanovic MD, Andelinovic S, Gugic D, Primorac D. Taq polymerase reverses inhibition of quantitative real time polymerase chain reaction by humic acid. Croat Med J. 2005;46:556–62.
PubMed
PubMed Central
Google Scholar
Guo F, Yu J, Zhang L, Li J. Massively parallel sequencing of forensic STRs and SNPs using the Illumina ForenSeq DNA Signature Prep Kit on the MiSeq FGx Forensic Genomics System. Forensic Sci Int Genet. 2017;31:135–48.
CAS
PubMed
Article
PubMed Central
Google Scholar
Abu Al-Soud W, Ouis IS, Li DQ, Ljungh S, Wadström T. Characterization of the PCR inhibitory effect of bile to optimize real-time PCR detection of Helicobacter species. FEMS Immunol Med Microbiol. 2005;44:177–82.
Article
CAS
Google Scholar
Lantz P-G, Matsson M, Wadström T, Rådström P. Removal of PCR inhibitors from human faecal samples through the use of an aqueous two-phase system for sample preparation prior to PCR. J Microbiol Methods. 1997;28:159–67.
CAS
Article
Google Scholar
Katcher HL, Schwartz I. A distinctive property of Tth DNA polymerase: enzymatic amplification in the presence of phenol. BioTechniques. 1994;16:84–92.
CAS
PubMed
PubMed Central
Google Scholar
Hedman J, Nordgaard A, Dufva C, Rasmusson B, Ansell R, Rådström P. Synergy between DNA polymerases increases polymerase chain reaction inhibitor tolerance in forensic DNA analysis. Anal Biochem. 2010;405:192–200.
CAS
PubMed
Article
PubMed Central
Google Scholar
Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 2011;12:R18.
CAS
PubMed
PubMed Central
Article
Google Scholar
Brandariz-Fontes C, Camacho-Sanchez M, Vilà C, Vega-Pla JL, Rico C, Leonard JA. Effect of the enzyme and PCR conditions on the quality of high-throughput DNA sequencing results. Sci Rep. 2015;5:8056.
CAS
PubMed
PubMed Central
Article
Google Scholar
Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, et al. A large genome center’s improvements to the Illumina sequencing system. Nat Methods. 2008;5:1005–10.
CAS
PubMed
PubMed Central
Article
Google Scholar
Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012;13:1–13.
PubMed
PubMed Central
Article
CAS
Google Scholar
Murray DC, Coghlan ML, Bunce M. From benchtop to desktop: important considerations when designing amplicon sequencing workflows. PLoS One. 2015;10:e0124671.
PubMed
PubMed Central
Article
CAS
Google Scholar
Chen CY. DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present. Front Microbiol. 2014;5:305.
PubMed
PubMed Central
Google Scholar
Dabney J, Meyer M. Length and GC-biases during sequencing library amplification: a comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries. BioTechniques. 2012;52:87–94.
CAS
PubMed
Article
PubMed Central
Google Scholar
Quail MA, Otto TD, Gu Y, Harris SR, Skelly TF, McQuillan JA, et al. Optimal enzymes for amplifying sequencing libraries. Nat Methods. 2011;9:10–1.
PubMed
Article
CAS
PubMed Central
Google Scholar
Goldberg CS, Turner CR, Deiner K, Klymus KE, Thomsen PF, Murphy MA, et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol Evol. 2016;7:1299–307.
Article
Google Scholar
Best K, Oakes T, Heather JM, Shawe-Taylor J, Chain B. Computational analysis of stochastic heterogeneity in PCR amplification efficiency revealed by single molecule barcoding. Sci Rep. 2015;5:14629.
CAS
PubMed
PubMed Central
Article
Google Scholar
Oyola SO, Otto TD, Gu Y, Maslen G, Manske M, Campino S, et al. Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes. BMC Genomics. 2012;13:1.
CAS
PubMed
PubMed Central
Article
Google Scholar
Schirmer M, Ijaz UZ, D’Amore R, Hall N, Sloan WT, Quince C. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res. 2015.
Sidstedt M, Steffen CR, Kiesler KM, Vallone PM, Rådström P, Hedman J. The impact of common PCR inhibitors on forensic MPS analysis. Forensic Sci Int Genet. 2019;40:182–91.
CAS
PubMed
Article
PubMed Central
Google Scholar
Rubin RL, Carr RI. Anti-DNA activity of IgG F(ab′)2 from normal human serum. J Immunol. 1979;122:1604–7.
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Bunting KA, Kalsi J, Hinks JA, Latchman DS, Pearl LH, et al. Lupus autoantibodies to native DNA preferentially bind DNA presented on PolIV. Immunology. 2005;114:418–27.
CAS
PubMed
PubMed Central
Article
Google Scholar
Scholz M, Giddings I, Pusch CM. A polymerase chain reaction inhibitor of ancient hard and soft tissue DNA extracts is determined as human collagen type I. Anal Biochem. 1998;259:283–6.
CAS
PubMed
Article
PubMed Central
Google Scholar
Lee AB, Cooper TA. Improved direct PCR screen for bacterial colonies: wooden toothpicks inhibit PCR amplification. BioTechniques. 1995;18:225–6.
CAS
PubMed
PubMed Central
Google Scholar
Kreader CA. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol. 1996;62:1102–6.
CAS
PubMed
PubMed Central
Article
Google Scholar
Datta K, LiCata VJ. Thermodynamics of the binding of Thermus aquaticus DNA polymerase to primed-template DNA. Nucleic Acids Res. 2003;31:5590–7.
CAS
PubMed
PubMed Central
Article
Google Scholar
Datta K, LiCata VJ. Salt dependence of DNA binding by Thermus aquaticus and Escherichia coli DNA polymerases. J Biol Chem. 2003;278:5694–701.
CAS
PubMed
Article
PubMed Central
Google Scholar
Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 1996;6:986–94.
CAS
PubMed
Article
PubMed Central
Google Scholar
Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5′-3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci. 1991;88:7276–80.
CAS
PubMed
Article
PubMed Central
Google Scholar
Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 1995;4:357–62.
CAS
PubMed
Article
PubMed Central
Google Scholar
Armitage BA. Cyanine dye-DNA interactions: intercalation, groove binding, and aggregation. In: Waring MJ, Chaires JB, editors. DNA binders and related subjects. Berlin Heidelberg: Springer-Verlag; 2005. p. 55–76.
Chapter
Google Scholar
Mikheikin AL, Zhuze AL, Zasedatelev AS. Binding of symmetrical cyanine dyes into the DNA minor groove. J Biomol Struct Dyn. 2000;18:59–72.
CAS
PubMed
Article
PubMed Central
Google Scholar
Petty JT, Bordelon JA, Robertson ME. Thermodynamic characterization of the association of cyanine dyes with DNA. J Phys Chem B. 2000;104:7221–7.
CAS
Article
Google Scholar
Gudnason H, Dufva M, Bang DD, Wolff A. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature. Nucleic Acids Res. 2007;35:e127.
PubMed
PubMed Central
Article
CAS
Google Scholar
Higuchi R, Dollinger G, Walsh PS, Griffith R. Simultaneous amplification and detection of specific DNA sequences. Biotechnology. 1992;10:413–7.
CAS
PubMed
Article
PubMed Central
Google Scholar
Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP. Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques. 1997;22:130–8.
CAS
PubMed
Article
PubMed Central
Google Scholar
Dragan AI, Pavlovic R, McGivney JB, Casas-Finet JR, Bishop ES, Strouse RJ, et al. SYBR Green I: fluorescence properties and interaction with DNA. J Fluoresc. 2012;22:1189–99.
CAS
PubMed
Article
PubMed Central
Google Scholar
Monis PT, Giglio S, Saint CP. Comparison of SYT09 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Anal Biochem. 2005;340:24–34.
CAS
PubMed
Article
PubMed Central
Google Scholar
Zipper H, Brunner H, Bernhagen J, Vitzthum F. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res. 2004;32:e103.
PubMed
PubMed Central
Article
CAS
Google Scholar
Giglio S, Monis PT, Saint CP. Demonstration of preferential binding of SYBR Green I to specific DNA fragments in real-time multiplex PCR. Nucleic Acids Res. 2003;31:e136.
PubMed
PubMed Central
Article
CAS
Google Scholar
Eischeid AC. SYTO dyes and EvaGreen outperform SYBR Green in real-time PCR. BMC Res Notes. 2011;4:263.
PubMed
PubMed Central
Article
Google Scholar
Mao F, Leung WY, Xin X. Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotechnol. 2007;7:76.
PubMed
PubMed Central
Article
CAS
Google Scholar
Shoute LCT, Loppnow GR. Characterization of the binding interactions between EvaGreen dye and dsDNA. Phys Chem Chem Phys. 2018;20:4772–80.
CAS
PubMed
Article
PubMed Central
Google Scholar
Burkhart CA, Norris MD, Haber M. A simple method for the isolation of genomic DNA from mouse tail free of real-time PCR inhibitors. J Biochem Biophys Methods. 2002;52:145–9.
CAS
PubMed
Article
PubMed Central
Google Scholar
Bachoon DS, Otero E, Hodson RE. Effects of humic substances on fluorometric DNA quantification and DNA hybridization. J Microbiol Methods. 2001;47:73–82.
CAS
PubMed
Article
PubMed Central
Google Scholar
Hirsch RE. Heme-protein fluorescence. In: Lakowicz JR, editor. Topics in fluorescence spectroscopy: vol 6. Boston, MA: Springer; 2002. p. 221–55.
Chapter
Google Scholar
Kamaljeet, Bansal S, SenGupta U. A study of the interaction of bovine hemoglobin with synthetic dyes using spectroscopic techniques and molecular docking. Front Chem. 2016;4:50.
CAS
PubMed
PubMed Central
Google Scholar
Boiso L, Sanga M, Hedman J. DTT quenches the passive reference signal in real-time PCR. Forensic Sci Int Genet Suppl Ser. 2015;5:e5–6.
Article
Google Scholar
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.
CAS
PubMed
Article
PubMed Central
Google Scholar
Huggett JF, Foy CA, Benes V, Emslie K, Garson JA, Haynes R, et al. The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem. 2013;59:892–902.
CAS
PubMed
Article
PubMed Central
Google Scholar
Hedman J, Lavander M, Salomonsson EN, Jinnerot T, Boiso L, Magnusson B, et al. Validation guidelines for PCR workflows in bioterrorism preparedness, food safety and forensics. Accred Qual Assur. 2018;23:133–44.
Article
Google Scholar
Forootan A, Sjöback R, Björkman J, Sjögreen B, Linz L, Kubista M. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol Detect Quantif. 2017;12:1–6.
CAS
PubMed
PubMed Central
Article
Google Scholar
Vynck M, Vandesompele J, Thas O. Quality control of digital PCR assays and platforms. Anal Bioanal Chem. 2017;409:5919–31.
CAS
PubMed
Article
PubMed Central
Google Scholar
Sanga M, Boiso L, Lindsten H, Rådström P, Ansell R, Hedman J. A panel of PCR-inhibitory reference materials for quality evaluation of multiplex STR analysis kits. Forensic Sci Int Genet Suppl Ser. 2015;5:e317–e9.
Article
Google Scholar
Bar T, Ståhlberg A, Muszta A, Kubista M. Kinetic outlier detection (KOD) in real-time PCR. Nucleic Acids Res. 2003;31:e105–e.
Article
CAS
Google Scholar
Hoorfar J, Cook N, Malorny B, Wagner M, De Medici D, Abdulmawjood A, et al. Making internal amplification control mandatory for diagnostic PCR. J Clin Microbiol. 2003;41:5835.
PubMed
PubMed Central
Article
Google Scholar
Johansson G, Andersson D, Filges S, Li J, Muth A, Godfrey TE, et al. Considerations and quality controls when analyzing cell-free tumor DNA. Biomol Detect Quantif. 2019;17:100078.
CAS
PubMed
PubMed Central
Article
Google Scholar
Gardner AF, Kelman Z. DNA polymerases in biotechnology. Front Microbiol. 2014;5:659.
PubMed
PubMed Central
Article
Google Scholar
Borgmästars E, Jazi MM, Persson S, Jansson L, Rådström P, Simonsson M, et al. Improved detection of norovirus and hepatitis a virus in surface water by applying pre-PCR processing. Food Environ Virol. 2017;9:395–405.
PubMed
Article
CAS
PubMed Central
Google Scholar
Abu Al-Soud W, Rådström P. Capacity of nine thermostable DNA polymerases to mediate DNA amplification in the presence of PCR-inhibiting samples. Appl Environ Microbiol. 1998;64:3748–53.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hedman J, Nordgaard A, Rasmusson B, Ansell R, Rådström P. Improved forensic DNA analysis through the use of alternative DNA polymerases and statistical modeling of DNA profiles. BioTechniques. 2009;47:951–8.
CAS
PubMed
Article
PubMed Central
Google Scholar
Hedman J, Dufva C, Norén L, Ansell C, Albinsson L, Ansell R. Applying a PCR inhibitor tolerant DNA polymerase blend in forensic DNA profiling. Forensic Sci Int Genet Suppl Ser. 2011;3:e349–e50.
Article
Google Scholar
Kermekchiev MB, Kirilova LI, Vail EE, Barnes WM. Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples. Nucleic Acids Res. 2009;37:e40.
PubMed
PubMed Central
Article
CAS
Google Scholar
Zhang Z, Kermekchiev MB, Barnes WM. Direct DNA amplification from crude clinical samples using a PCR enhancer cocktail and novel mutants of Taq. J Mol Diagn. 2010;12:152–61.
PubMed
PubMed Central
Article
CAS
Google Scholar
Arezi B, McKinney N, Hansen C, Cayouette M, Fox J, Chen K, et al. Compartmentalized self-replication under fast PCR cycling conditions yields Taq DNA polymerase mutants with increased DNA-binding affinity and blood resistance. Front Microbiol. 2014;5:408.
PubMed
PubMed Central
Article
Google Scholar
Oscorbin IP, Belousova EA, Boyarskikh UA, Zakabunin AI, Khrapov EA, Filipenko ML. Derivatives of Bst-like Gss-polymerase with improved processivity and inhibitor tolerance. Nucleic Acids Res. 2017;45:9595–610.
CAS
PubMed
PubMed Central
Article
Google Scholar
Olszewski M, Śpibida M, Bilek M, Krawczyk B. Fusion of Taq DNA polymerase with single-stranded DNA binding-like protein of Nanoarchaeum equitans—expression and characterization. PLoS One. 2017;12:e0184162.
PubMed
PubMed Central
Article
CAS
Google Scholar
Spibida M, Krawczyk B, Zalewska-Piatek B, Piatek R, Wysocka M, Olszewski M. Fusion of DNA-binding domain of Pyrococcus furiosus ligase with TaqStoffel DNA polymerase as a useful tool in PCR with difficult targets. Appl Microbiol Biotechnol. 2018;102:713–21.
CAS
PubMed
Article
PubMed Central
Google Scholar
Baar C, d’Abbadie M, Vaisman A, Arana ME, Hofreiter M, Woodgate R, et al. Molecular breeding of polymerases for resistance to environmental inhibitors. Nucleic Acids Res. 2011;39:e51.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ghadessy FJ, Ong JL, Holliger P. Directed evolution of polymerase function by compartmentalized self-replication. Proc Natl Acad Sci. 2001;98:4552–7.
CAS
PubMed
Article
PubMed Central
Google Scholar
Pavlov AR, Belova GI, Kozyavkin SA, Slesarev AI. Helix-hairpin-helix motifs confer salt resistance and processivity on chimeric DNA polymerases. Proc Natl Acad Sci. 2002;99:13510–5.
CAS
PubMed
Article
PubMed Central
Google Scholar
Wolffs P, Grage H, Hagberg O, Rådström P. Impact of DNA polymerases and their buffer systems on quantitative real-time PCR. J Clin Microbiol. 2004;42:408–11.
CAS
PubMed
PubMed Central
Article
Google Scholar
Abu Al-Soud W, Rådström P. Effects of amplification facilitators on diagnostic PCR in the presence of blood, feces, and meat. J Clin Microbiol. 2000;38:4463–70.
CAS
PubMed
PubMed Central
Article
Google Scholar
Horáková H, Polakovičová I, Shaik GM, Eitler J, Bugajev V, Dráberová L, et al. 1,2-propanediol-trehalose mixture as a potent quantitative real-time PCR enhancer. BMC Biotechnol. 2011;11:41.
PubMed
PubMed Central
Article
CAS
Google Scholar
Cai D, Behrmann O, Hufert F, Dame G, Urban G. Direct DNA and RNA detection from large volumes of whole human blood. Sci Rep. 2018;8:3410.
PubMed
PubMed Central
Article
CAS
Google Scholar
Hoshino T, Inagaki F. Molecular quantification of environmental DNA using microfluidics and digital PCR. Syst Appl Microbiol. 2012;35:390–5.
CAS
PubMed
Article
PubMed Central
Google Scholar
Matsumura S, Matsusue A, Waters B, Kashiwagi M, Hara K, Kubo S-i. Effects of PCR inhibitors on mRNA expression for human blood identification. Legal Med 2018;32:113–119.
Jansson L, Koliana M, Sidstedt M, Hedman J. Blending DNA binding dyes to improve detection in real-time PCR. Biotechnol Rep. 2017;14:34–7.
Article
Google Scholar