Skip to main content

Advertisement

Log in

Ion desorption efficiency and internal energy transfer in polymeric electrospun nanofiber-based surface-assisted laser desorption/ionization mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The understanding of the desorption mechanism in surface-assisted laser desorption/ionization (SALDI) remains incomplete because there are numerous types of SALDI materials with a broad range of physical and chemical properties, many of which impact the ultimate analytical performance in terms of signal generation. In this study, the chemical thermometer molecule, benzylpyridinium chloride, is applied to investigate the desorption process of SALDI using electrospun nanofibrous polymer and polymer composite substrates. The ion desorption efficiency was inversely related to the ion internal energy, which could not be fully explained by a thermal desorption mechanism. A competing non-thermal desorption (i.e., phase transition/explosion) was proposed to be involved in this SALDI process. The influence of the orientation and dimension of the nanofiber structure revealed that a cross-linked nanofiber network with a small diameter favored the nanofiber-assisted LDI to provide efficient ion desorption.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fenner NC, Daly NR. Laser used for mass analysis. Rev Sci Instrum. 1996;37(8):1068–70.

    Article  Google Scholar 

  2. Zakett D, Schoen AE, Cooks RG, Hemberger PH. Laser-desorption mass spectrometry/mass spectrometry and the mechanism of desorption ionization. J Am Chem Soc. 1981;03(5):1295–7.

    Article  Google Scholar 

  3. Karas M, Hillenkamp F. Laser desorption ionization of protein with molecular masses exceeding 10,000 Daltons. Anal Chem. 1988;60(20):2299–301.

    Article  CAS  Google Scholar 

  4. Lu M, Yang X, Yang Y, Qin P, Wu X, Cai Z. Nanomaterial as assisted matrix of laser desorption/ionization time-of-flight mass spectrometry for the analysis of small molecule. Nanomaterials. 2017;92:143–9.

    Google Scholar 

  5. Dattelbaum AM, Iyer S. Surface-assisted laser desorption/ionization mass spectrometry. Expert Rev Proteomics. 2006;3(1):153–61.

    Article  CAS  Google Scholar 

  6. Peterson DS. Matrix-free methods for laser desorption/ionization mass spectrometry. Mass Spectrom Rev. 2007;26(1):19–34.

    Article  CAS  Google Scholar 

  7. Dale MJ, Konchenmuss R, Zenobi R. Graphite/liquid mixed matrices for laser desorption/ionization mass spectrometry. Anal Chem. 1996;68(19):3321–9.

    Article  CAS  Google Scholar 

  8. Schurenberg M, Dreisewerd K, Hillenkamp F. Laser desorption/ionization mass spectrometry of peptides and proteins with particle suspension matrixes. Anal Chem. 1999;71(1):221–9.

    Article  CAS  Google Scholar 

  9. Alimpiev S, Nikiforov S, Karavanskii V, Minton T, Sunner J. On the mechanism of laser-induced desorption-ionization of organic compounds from etched silicon and carbon surfaces. J Chem Phys. 2001;115(4):1891–901.

    Article  CAS  Google Scholar 

  10. Dreisewerd K. The desorption process in MALDI. Chem Rev. 2003;103(2):395–425.

    Article  CAS  Google Scholar 

  11. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, et al. Protein and polymer analyses up to m/z 100000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1988;2:151–3.

    Article  CAS  Google Scholar 

  12. Yonezawa T, Kawasaki H, Tarui A, Watanabe T, Arakawa R, Shimada T, et al. Detailed investigation on the possibility of nanoparticles of various metal elements for surface-assisted laser desorption/ionization mass spectrometry. Anal Sci. 2009;25:339–46.

    Article  CAS  Google Scholar 

  13. Tang HW, Ng KM, Lu W, Che CM. Ion desorption efficiency and internal energy transfer in carbon-based surface-assisted laser desorption/ionization mass spectrometry: desorption mechanisms and the design of SALDI substrates. Anal Chem. 2009;81(12):4720–9.

    Article  CAS  Google Scholar 

  14. Kurita M, Arakawa R, Kawasaki H. Silver nanoparticle functionalized glass fibers for combined surface-enhanced Raman scattering spectroscopy (SERS)/surface-assisted laser desorption/ionization (SALDI) mass spectrometry via plasmonic/thermal hot spots. Analyst. 2016;141:5835–41.

    Article  CAS  Google Scholar 

  15. Stolee JA, Walker BN, Zorba V, Russo RE, Vertes A. Laser-nanostructure interactions for ion production. Phys Chem Chem Phys. 2002;14:8453–71.

    Article  Google Scholar 

  16. Lu T, Olesik SV. Electrospun nanofibers as substrates for surface-assisted laser desorption/ionization and matrix-enhanced surface-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2013;85(9):4384–91.

    Article  CAS  Google Scholar 

  17. Bian J, Olesik SV. Surface-assisted laser desorption/ionization time-of-flight mass spectrometry of small drug molecules and high molecular weight synthetic/biological polymers using electrospun composite nanofibers. Analyst. 2017;142(7):1125–32.

    Article  CAS  Google Scholar 

  18. Trauger SA, Go EP, Shen Z, Apon JV, Compton BJ, Bouvier ESP, et al. High sensitivity and analyte capture with desorption/ionization mass spectrometry on silylated porous silicon. Anal Chem. 2004;76:4484–9.

    Article  CAS  Google Scholar 

  19. Law KP. Laser desorption/ionization mass spectrometry on nanostructured semiconductor substrates: DIOSTM and QuickMassTM. Int J Mass Spectrom. 2010;290:72–84.

    Article  CAS  Google Scholar 

  20. Bian J, Olesik SV. Polyvinylpyrrolidone composite nanofibers as efficient substrates for surface-assisted laser desorption/ionization mass spectrometry. Int J Mass Spectrom. 2020;448:116253.

    Article  Google Scholar 

  21. Clark J, Olesik SV. Technique for ultrathin layer chromatography using an electrospun, nanofibrous stationary phase. Anal Chem. 2009;81(10):4121–9.

    Article  CAS  Google Scholar 

  22. Beilke MC, Zewe JW, Clark JE, Olesik SV. Aligned electrospun nanofibers for ultrathin layer chromatography. Anal Chim Acta. 2013;761(25):201–8.

    Article  CAS  Google Scholar 

  23. Ng KM, Chau SL, Tang HW, Wei XG, Lau KC, Ye F, et al. Ion-desorption efficiency and internal-energy transfer in surface-assisted laser desorption/ionization: more implication(s) for the thermal-driven and phase-transition-driven desorption process. J Phys Chem C. 2015;119:23708–20.

    Article  CAS  Google Scholar 

  24. Luo G, Marginean I, Vertes A. Internal energy of ions generated by matrix-assisted laser desorption/ionization. Anal Chem. 2002;74:6185–90.

    Article  CAS  Google Scholar 

  25. Derwa F, DePauw E, Natalis P. New basis for a method for the estimation of secondary ion internal energy distribution in soft ionization techniques. Org Mass Spectrom. 1991;26(2):117–8.

    Article  CAS  Google Scholar 

  26. Collette C, Drahos L, DePauw E, Vekey K. Comparison of the internal energy distributions of ions produced by different electrospray sources. Rapid Commun Mass Spectrom. 1998;12(22):1673–8.

    Article  CAS  Google Scholar 

  27. Gabelica V, DePauw E. Internal energy and fragmentation of ions produced in electrospray sources. Mass Spectrom Rev. 2005;24(4):566–87.

    Article  CAS  Google Scholar 

  28. Baer T, Mayer PM. Statistical Rice-Ramsperger-Kassel-Marcus quasiequilibrium theory calculations in mass spectrometry. J Am Soc Mass Spectrom. 1997;8(2):103–15.

    Article  CAS  Google Scholar 

  29. Drahos L, Vekey K. MassKinetics: a theoretical model of mass spectra incorporating physical processes, reaction kinetics and mathematical descriptions. J Mass Spectrom. 2001;36(3):237–63.

    Article  CAS  Google Scholar 

  30. Beyer T, Swinehart DF. Algorithm 448: number of multiply-restricted partitions [A1]. Commun ACM. 1973;16(6):379.

    Article  Google Scholar 

  31. Naban-Maillet J, Lesage D, Bossée A, Gimbert Y, Sztáray J, Vékey K, et al. Internal energy distribution in electrospray ionization. J Mass Spectrom. 2005;40(1):1–8.

    Article  CAS  Google Scholar 

  32. Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. Wiley; 2017.

  33. Luo G, Chen Y, Daniels H, Dubrow R, Vertes A. Internal energy transfer in laser desorption/ ionization. J Phys Chem B. 2006;110:13381–6.

    Article  CAS  Google Scholar 

  34. Lai SKM, Tang HW, Lau KC, Ng KM. Nanosecond UV laser ablation of gold nanoparticles: enhancement of ion desorption, vaporization or phase explosion. J Phys Chem C. 2016;120:20368–77.

    Article  CAS  Google Scholar 

  35. Silina YE, Koch M, Volmer D. Influence of surface melting effects and availability of reagent ions on LDI-MS efficiency after UV laser irradiation of Pd nanostructures. J Mass Spectrom. 2015;50(3):578–85.

    Article  CAS  Google Scholar 

  36. Wada Y, Yanagishita T, Masuda H. Ordered porous alumina geometries and surface metals for surface-assisted laser desorption/ionization of biomolecules: possible mechanistic implications of metal surface melting. Anal Chem. 2007;79(23):9122–7.

    Article  CAS  Google Scholar 

  37. Sherrod SD, Diaz AJ, Russell WK, Cremer PS, Russell DS. Silver nanoparticles as selective ionization probes for analysis of olefins by mass spectrometry. Anal Chem. 2008;80(17):6796–9.

    Article  CAS  Google Scholar 

  38. Yonezawa T, Tsukamoto H, Hayashi S, Myojin Y, Kawasaki H, Arakawa R. Suitability of GaP nanoparticles as a surface-assisted laser desorption/ionization mass spectroscopy inorganic matrix and their soft ionization ability. Analyst. 2013;138(4):995–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Rick Spinney for assisting the theoretical calculation using Spartan software and Dr. Alicia Friedman for assistance measuring the fluence of the laser.

Funding

This work was financially supported by the National Science Foundation (Grant No. CHE-1610254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan V. Olesik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approach

The article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 789 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, J., Olesik, S.V. Ion desorption efficiency and internal energy transfer in polymeric electrospun nanofiber-based surface-assisted laser desorption/ionization mass spectrometry. Anal Bioanal Chem 412, 923–931 (2020). https://doi.org/10.1007/s00216-019-02315-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02315-x

Keywords

Navigation