Skip to main content

Advertisement

Log in

Impact of aminated carbon quantum dots as a novel co-reactant for Ru(bpy)32+: resolving specific electrochemiluminescence for butein detection

  • Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Development of novel nanomaterial-based co-reactant is highly desired for enhancing ECL intensity and widespread analytical applications. Herein, we report the distinct role of amine-functionalized carbon quantum dots (f-CQDs) as a co-reactant, for the first time, augmenting the ECL property of Ru(bpy)32+ and demonstrating for biopharmaceutical (butein) detection. Unlike conventional co-reactants like tripropylamine (TPrA), 2-(dibutylamino)ethanol (DBAE), and pristine CQDs, the f-CQDs as a co-reactant yield superior ECL of Ru(bpy)32+. More importantly, the ECL intensity is independent of types of noble metals, metal oxide surfaces, and dissolved oxygen. Notably, the ECL intensity of Ru(bpy)32+–f-CQDs is linearly quenched with an increased concentration of butein, whereas no changes were observed with conventional co-reactants. ECL functionality of Ru(bpy)32+–f-CQDs has no interference with other similar phytochemicals and antioxidants. Enhanced selectivity is observed due to the formation of polyaminoquinone-like structures, which is confirmed by in situ spectroelectrochemical (UV–vis) and FT-IR studies. The present result envisaged that f-CQDs could be an alternative co-reactant for TPrA/DBAE, raising the ECL of Ru(bpy)32+ suitable for analytical studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Kirschbaum SEK, Baeumner AJ. A review of electrochemiluminescence (ECL) in and for microfluidic analytical devices. Anal Bioanal Chem. 2015;407:3911–26. https://doi.org/10.1007/s00216-015-8557-x.

    Article  CAS  PubMed  Google Scholar 

  2. Shen J, Zhou T, Huang R. Recent advances in electrochemiluminescence sensors for pathogenic bacteria detection. Micromachines. 2019;10:532. https://doi.org/10.3390/mi10080532.

    Article  PubMed Central  Google Scholar 

  3. Zhang J, Arbault S, Sojic N, Jiang D. Electrochemiluminescence imaging for bioanalysis. Annu Rev Anal Chem. 2019;12:275–95. https://doi.org/10.1146/annurev-anchem-061318-115226.

    Article  CAS  Google Scholar 

  4. Babamiri B, Bahari D, Salimi A. Highly sensitive bio affinity electrochemiluminescence sensors: recent advances and future directions. Biosens Bioelectron. 2019;142:111530. https://doi.org/10.1016/j.bios.2019.111530.

    Article  CAS  PubMed  Google Scholar 

  5. Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104:3003–36. https://doi.org/10.1021/cr020373d.

    Article  CAS  PubMed  Google Scholar 

  6. Forster RJ, Bertoncello P, Keyes TE. Electrogenerated chemiluminescence. Annu Rev Anal Chem. 2009;2:359–85. https://doi.org/10.1146/annurev-anchem-060908-155305.

    Article  CAS  Google Scholar 

  7. Zu Y, Bard AJ. Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium tris(2,2′)bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity. Anal Chem. 2000;72:3223–32. https://doi.org/10.1021/ac000199y.

    Article  CAS  PubMed  Google Scholar 

  8. White HS, Bard AJ. Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,21 - bpy)32+-S2O82- system in acetonitrile-water solutions. J Am Chem Soc. 1982;104:6891–5. https://doi.org/10.1021/ja00389a001.

    Article  CAS  Google Scholar 

  9. Liu X, Shi L, Niu W, Li H, Xu G. Environmentally friendly and highly sensitive ruthenium(II) tris(2,2′-bipyridyl) electrochemiluminescent system using 2-(dibutylamino)ethanol as co-reactant. Angew Chem Int Ed. 2007;46:421–4. https://doi.org/10.1002/anie.200603491.

    Article  CAS  Google Scholar 

  10. Takahashi F, Hattori K, Matsuoka M, Jin J. Electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium(II) with ascorbic acid and dehydroascorbic acid in aqueous and non-aqueous solutions. Anal Sci. 2016;32:443–7. https://doi.org/10.2116/analsci.32.443.

    Article  CAS  PubMed  Google Scholar 

  11. Choi J-P, Bard AJ. Electrogenerated chemiluminescence (ECL) 79. Anal Chim Acta. 2005;541:141–8. https://doi.org/10.1016/j.aca.2004.11.075.

    Article  CAS  Google Scholar 

  12. Venkateswara Raju C, Senthil Kumar S. Highly sensitive novel cathodic electrochemiluminescence of tris(2,2′-bipyridine)ruthenium(II) using glutathione as a co-reactant. Chem Commun. 2017;53:6593–6. https://doi.org/10.1039/C7CC03349D.

    Article  CAS  Google Scholar 

  13. Tokel NE, Bard AJ. Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris(2,2′-bipyridine)ruthenium(II) dichloride. J Am Chem Soc. 1972;94:2862–3. https://doi.org/10.1021/ja00763a056.

    Article  CAS  Google Scholar 

  14. Carrara S, Arcudi F, Prato M, De Cola L. Amine-rich nitrogen-doped carbon nanodots as a platform for self-enhancing electrochemiluminescence. Angew Chem Int Ed. 2017;56:4757–61. https://doi.org/10.1002/anie.201611879.

    Article  CAS  Google Scholar 

  15. Leland JK. Electrogenerated chemiluminescence: an oxidative-reduction type ECL reaction sequence using tripropyl amine. J Electrochem Soc. 1990;137:3127. https://doi.org/10.1149/1.2086171.

    Article  CAS  Google Scholar 

  16. Kalaiyarasan G, Veerapandian M, JebaMercy G, Balamurugan K, Joseph J. Amygdalin functionalized carbon quantum dots for probing β-glucosidase activity for cancer diagnosis and therapeutics. ACS Biomater Sci Eng. 2019. https://doi.org/10.1021/acsbiomaterials.9b00394.

    Article  CAS  Google Scholar 

  17. Kalaiyarasan G, Hemlata C, Joseph J. Fluorescence turn-on, specific detection of cystine in human blood plasma and urine samples by nitrogen-doped carbon quantum dots. ACS Omega. 2019;4:1007–14. https://doi.org/10.1021/acsomega.8b03187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kalaiyarasan G, Joseph J. Cholesterol derived carbon quantum dots as fluorescence probe for the specific detection of hemoglobin in diluted human blood samples. Mater Sci Eng C. 2019;94:580–6. https://doi.org/10.1016/j.msec.2018.10.007.

    Article  CAS  Google Scholar 

  19. Kalaiyarasan G, Joseph J. Determination of vitamin B12 via pH-dependent quenching of the fluorescence of nitrogen-doped carbon quantum dots. Microchim Acta. 2017;184:3883–91. https://doi.org/10.1007/s00604-017-2421-y.

    Article  CAS  Google Scholar 

  20. Kalaiyarasan G, Joseph J. Efficient dual-mode colorimetric/fluorometric sensor for the detection of copper ions and vitamin C based on pH-sensitive amino-terminated nitrogen-doped carbon quantum dots: effect of reactive oxygen species and antioxidants. Anal Bioanal Chem. 2019;411:2619–33. https://doi.org/10.1007/s00216-019-01710-8.

    Article  CAS  PubMed  Google Scholar 

  21. Nekoueian K, Amiri M, Sillanpää M, Marken F, Boukherroub R, Szunerits S. Carbon-based quantum particles: an electroanalytical and biomedical perspective. Chem Soc Rev. 2019;48:4281–316. https://doi.org/10.1039/C8CS00445E.

    Article  CAS  PubMed  Google Scholar 

  22. Xing H, Zhai Q, Zhang X, Li J, Wang E. Boron nitride quantum dots as efficient coreactant for enhanced electrochemiluminescence of ruthenium(II) tris(2,2′-bipyridyl). 2018;90. https://doi.org/10.1021/acs.analchem.7b04428.

    Article  CAS  Google Scholar 

  23. Qi B-P, Zhang X, Shang B-B, Xiang D, Qu W, Zhang S. A facile method to sensitively monitor chlorinated phenols based on Ru(bpy)32+ electrochemiluminescent system using graphene quantum dots as coreactants. Carbon N Y. 2017;121:72–8. https://doi.org/10.1016/j.carbon.2017.05.045.

    Article  CAS  Google Scholar 

  24. Li L, Liu D, Mao H, You T. Multifunctional solid-state electrochemiluminescence sensing platform based on poly(ethylenimine) capped N-doped carbon dots as novel co-reactant. Biosens Bioelectron. 2017;89:489–95. https://doi.org/10.1016/j.bios.2016.03.069.

    Article  CAS  PubMed  Google Scholar 

  25. Long Y-M, Bao L, Zhao J-Y, Zhang Z-L, Pang D-W. Revealing carbon nanodots as coreactants of the anodic electrochemiluminescence of Ru(bpy)32+. Anal Chem. 2014;86:7224–8. https://doi.org/10.1021/ac502405p.

    Article  CAS  PubMed  Google Scholar 

  26. Chen X, Liu Y, Ma Q. Recent advances in quantum dot-based electrochemiluminescence sensors. J Mater Chem C. 2018;6:942–59. https://doi.org/10.1039/C7TC05474B.

    Article  CAS  Google Scholar 

  27. Kalaiyarasan G, Anusuya K, Joseph J. Melamine dependent fluorescence of glutathione protected gold nanoclusters and ratiometric quantification of melamine in commercial cow milk and infant formula. Appl Surf Sci. 2017;420:963–9. https://doi.org/10.1016/j.apsusc.2017.05.193.

    Article  CAS  Google Scholar 

  28. Gupta SC. Anti-inflammatory nutraceuticals and chronic diseases. Cham: Springer International; 2016.

    Book  Google Scholar 

  29. Padmavathi G, Roy NK, Bordoloi D, Arfuso F, Mishra S, Sethi G, et al. Butein in health and disease: a comprehensive review. Phytomedicine. 2017;25:118–27. https://doi.org/10.1016/j.phymed.2016.12.002.

    Article  CAS  PubMed  Google Scholar 

  30. Darshani P, Gumpu MB, Thumpati P, Rayappan JBB, Ravichandiran V, Pazhani GP, et al. Chemically synthesized butein and butin: optical, structure and electrochemical redox functionality at electrode interface. J Photochem Photobiol B Biol. 2018;182:122–9. https://doi.org/10.1016/j.jphotobiol.2018.04.001.

    Article  CAS  Google Scholar 

  31. Choi J-P, Bard AJ. Electrogenerated chemiluminescence (ECL) 79.: reductive-oxidation ECL of tris(2,2′-bipyridine)ruthenium(II) using hydrogen peroxide as a coreactant in pH 7.5 phosphate buffer solution. Anal Chim Acta. 2005;541:141–8. https://doi.org/10.1016/j.aca.2004.11.075.

    Article  CAS  Google Scholar 

  32. Zheng H, Zu Y. Emission of tris(2,2′-bipyridine)ruthenium(II) by coreactant electrogenerated chemiluminescence: from O2-insensitive to highly O2-sensitive. J Phys Chem B. 2005;109:12049–53. https://doi.org/10.1021/jp050350d.

    Article  CAS  PubMed  Google Scholar 

  33. Zanarini S, Rampazzo E, Della CL, Marcaccio M, Marzocchi E, Montalti M, et al. Ru(bpy)3 covalently doped silica nanoparticles as multicenter tunable structures for electrochemiluminescence amplification. J Am Chem Soc. 2009;131:2260–7. https://doi.org/10.1021/ja8077158.

    Article  CAS  PubMed  Google Scholar 

  34. Phani KLN, Pitchumani S, Muralidharan S, Ravichandran S, Iyer SVK. Electrosynthesis of polyamino-benzoquinone (PAQ) polymers. J Electroanal Chem. 1993;353:315–22. https://doi.org/10.1016/0022-0728(93)80308-5.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Joint CSIR-UGC for Senior Research Fellowship (to G.K. and C.V.R.) and by the Department of Science and Technology (EMR/2017/004449) (to S.S.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanmugam Senthil Kumar or James Joseph.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This study involves the use of human serum samples collected at the CSIR-CECRI Health Center, Karaikudi, from different patient volunteers. Verbal consents of all volunteers were obtained by a clinician (Dr. Raja Vijayakumar, MBBS, Full-Time Medical Officer, CSIR-CECRI, Karaikudi) and a medical lab technician (Mr. R. Venkatesh, B.Sc., CMLT (Certificate Course in Medical Laboratory Technology)). Serum samples were exclusively used for validation of the developed method. The study was performed with prior approval of head of the institution, CSIR-CECRI, as per ethical standards.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1004 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaiyarasan, G., Raju, C.V., Veerapandian, M. et al. Impact of aminated carbon quantum dots as a novel co-reactant for Ru(bpy)32+: resolving specific electrochemiluminescence for butein detection. Anal Bioanal Chem 412, 539–546 (2020). https://doi.org/10.1007/s00216-019-02305-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02305-z

Keywords

Navigation