Skip to main content
Log in

A validated UPLC-MS/MS method for the determination of aliphatic and aromatic isocyanate exposure in human urine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

4,4′-Methylenediphenyldiisocyanate (MDI), toluenediisocyanate (2,4-TDI and 2,6-TDI), and 1,6′-hexamethylenediisocyanate (HDI) are all commonly used in the production of polyurethane-containing materials in different application areas. Workers exposed occupationally to these compounds may develop sensitization with the potential to lead to asthma. Isocyanates are metabolized in vivo by conjugation to macromolecules and/or by acetylation prior to being eliminated in urine. The hydrolysis of urine samples releases free amine compounds from these metabolites as biomarkers of exposure, specific to each parent isocyanate: 4,4′-methylenedianiline (MDA), toluenediamine (2,4-TDA and 2,6-TDA), and hexamethylenediamine (HDA). To address the need for a validated method that could be used for the simultaneous determination of biomarkers of aliphatic and aromatic isocyanates to monitor occupational exposure based on recommended thresholds, we have developed an UPLC-MS/MS method for the quantitation of MDA, TDA isomers, and HDA following acid hydrolysis, solid-phase extraction, and derivatization of urine samples. Free amine compounds were derivatized with acetic anhydride to augment chromatographic retention and signal intensity. The method was developed considering the biological guidance value (BGV) of MDA at 10 μg L−1, and biological exposure indices (BEI) of TDA isomers and HDA at 5 μg g−1 and 15 μg g−1 creatinine, respectively. Limits of detection allowed monitoring down to 6% of BGV/BEI, with precision within 8%. The accuracy and reliability of the method were assessed using inter-laboratory reference samples and deemed acceptable based on three rounds of measurements. This novel method has therefore been proven as useful for occupational safety and health assessments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cocker J. Biological monitoring for isocyanates. Occup Med (Lond). 2007;57(6):391–3. https://doi.org/10.1093/occmed/kql148.

    Article  Google Scholar 

  2. European Commission. Methylenediphenyl diisocyanate (MDI): Institute for Health and Consumer Protection2005.

  3. Brorson T, Skarping G, Sango C. Biological monitoring of isocyanates and related amines. IV. 2,4- and 2,6-toluenediamine in hydrolysed plasma and urine after test-chamber exposure of humans to 2,4- and 2,6-toluene diisocyanate. Int Arch Occup Environ Health. 1991;63(4):253–9. https://doi.org/10.1007/bf00386374.

    Article  CAS  PubMed  Google Scholar 

  4. Gaines LG, Fent KW, Flack SL, Thomasen JM, Ball LM, Richardson DB, et al. Urine 1,6-hexamethylene diamine (HDA) levels among workers exposed to 1,6-hexamethylene diisocyanate (HDI). Ann Occup Hyg. 2010;54(6):678–91. https://doi.org/10.1093/annhyg/meq041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brorson T, Skarping G, Nielsen J. Biological monitoring of isocyanates and related amines. II. Test chamber exposure of humans to 1,6-hexamethylene diisocyanate (HDI). Int Arch Occup Environ Health. 1990;62(5):385–9. https://doi.org/10.1007/bf00381369.

    Article  CAS  PubMed  Google Scholar 

  6. Kreis K, Aumann-Suslin I, Ludeke A, Wegewitz U, Zeidler J. Graf von der Schulenburg JM. Costs of isocyanate-related occupational diseases: a systematic review. J Occup Environ Hyg. 2019;16(7):446–66. https://doi.org/10.1080/15459624.2019.1609005.

    Article  PubMed  Google Scholar 

  7. Sekizawa J, Greenberg MM. Diphenylmethane diisocyanate (MDI). Geneva: World Health Organization2000 Contract No.: 27.

  8. Thorne PS, Hillebrand JA, Lewis GR, Karol MH. Contact sensitivity by diisocyanates: potencies and cross-reactivities. Toxicol Appl Pharmacol. 1987;87(1):155–65. https://doi.org/10.1016/0041-008x(87)90093-7.

    Article  CAS  PubMed  Google Scholar 

  9. Rosenberg C, Nikkila K, Henriks-Eckerman ML, Peltonen K, Engstrorm K. Biological monitoring of aromatic diisocyanates in workers exposed to thermal degradation products of polyurethanes. J Environ Monit. 2002;4(5):711–6. https://doi.org/10.1039/b206340a.

    Article  CAS  PubMed  Google Scholar 

  10. Marand A, Karlsson D, Dalene M, Skarping G. Determination of amines as pentafluoropropionic acid anhydride derivatives in biological samples using liquid chromatography and tandem mass spectrometry. Analyst. 2004;129(6):522–8. https://doi.org/10.1039/b403439b.

    Article  CAS  PubMed  Google Scholar 

  11. Cocker J. Biological monitoring for isocyanates. Ann Occup Hyg. 2011;55(2):127–31. https://doi.org/10.1093/annhyg/meq083.

    Article  CAS  PubMed  Google Scholar 

  12. Jones K, Johnson PD, Baldwin PEJ, Coldwell M, Cooke J, Keen C, et al. Exposure to diisocyanates and their corresponding diamines in seven different workplaces. Ann Work Expo Health. 2017;61(3):383–93. https://doi.org/10.1093/annweh/wxx006.

    Article  CAS  PubMed  Google Scholar 

  13. Creely KS, Hughson GW, Cocker J, Jones K. Assessing isocyanate exposures in polyurethane industry sectors using biological and air monitoring methods. Ann Occup Hyg. 2006;50(6):609–21. https://doi.org/10.1093/annhyg/mel024.

    Article  CAS  PubMed  Google Scholar 

  14. Bello A, Xue Y, Gore R, Woskie S, Bello D. Assessment and control of exposures to polymeric methylene diphenyl diisocyanate (pMDI) in spray polyurethane foam applicators. Int J Hyg Environ Health. 2019;222(5):804–15. https://doi.org/10.1016/j.ijheh.2019.04.014.

    Article  CAS  PubMed  Google Scholar 

  15. Bhandari D, Ruhl J, Murphy A, McGahee E, Chambers D, Blount BC. Isotope dilution UPLC-APCI-MS/MS method for the quantitative measurement of aromatic diamines in human urine: biomarkers of diisocyanate exposure. Anal Chem. 2016;88(21):10687–92. https://doi.org/10.1021/acs.analchem.6b03191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sabbioni G, Dongari N, Kumar A. Determination of a new biomarker in subjects exposed to 4,4'-methylenediphenyl diisocyanate. Biomarkers. 2010;15(6):508–15. https://doi.org/10.3109/1354750X.2010.490880.

    Article  CAS  PubMed  Google Scholar 

  17. Bolognesi C, Baur X, Marczynski B, Norppa H, Sepai O, Sabbioni G. Carcinogenic risk of toluene diisocyanate and 4,4'-methylenediphenyl diisocyanate: epidemiological and experimental evidence. Crit Rev Toxicol. 2001;31(6):737–72. https://doi.org/10.1080/20014091111974.

    Article  CAS  PubMed  Google Scholar 

  18. Gledhill A, Wake A, Hext P, Leibold E, Shiotsuka R. Absorption, distribution, metabolism and excretion of an inhalation dose of [14C] 4,4'-methylenediphenyl diisocyanate in the male rat. Xenobiotica. 2005;35(3):273–92. https://doi.org/10.1080/00498250500057591.

    Article  CAS  PubMed  Google Scholar 

  19. DFG. List of MAK and BAT values 2016: Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area2016.

  20. ACGIH. Threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati: OH; 2017.

    Google Scholar 

  21. Bhandari D, Bowman BA, Patel AB, Chambers DM, De Jesus VR, Blount BC. UPLC-ESI-MS/MS method for the quantitative measurement of aliphatic diamines, trimethylamine N-oxide, and beta-methylamino-l-alanine in human urine. J Chromatogr B Anal Technol Biomed Life Sci. 2018;1083:86–92. https://doi.org/10.1016/j.jchromb.2018.02.043.

    Article  CAS  Google Scholar 

  22. Sakai T, Morita Y, Kim Y, Tao YX. LC-MS determination of urinary toluenediamine in workers exposed to toluene diisocyanate. Toxicol Lett. 2002;134(1-3):259–64.

    Article  CAS  Google Scholar 

  23. Skarping G, Dalene M, Brunmark P. Liquid-chromatography and mass-spectrometry determination of aromatic-amines in hydrolyzed urine from workers exposed to thermal-degradation products of polyurethane. Chromatographia. 1994;39(9-10):619–23. https://doi.org/10.1007/Bf02268290.

    Article  CAS  Google Scholar 

  24. Cocker JG, W. and Wilson, HK. Assessment of occupational exposure to 4,4'-diaminophenylmethane (methylene dianiline) by gas chromatography-mas spectrometry analysis of urine. Br J Ind Med 1986;43(9):620-625.

    Article  CAS  Google Scholar 

  25. Sauve JF, Levesque M, Huard M, Drolet D, Lavoue J, Tardif R, et al. Creatinine and specific gravity normalization in biological monitoring of occupational exposures. J Occup Environ Hyg. 2015;12(2):123–9. https://doi.org/10.1080/15459624.2014.955179.

    Article  CAS  PubMed  Google Scholar 

  26. Lepine M, Sleno L, Lesage J, Gagne S. A validated liquid chromatography/tandem mass spectrometry method for 4,4'-methylenedianiline quantitation in human urine as a measure of 4,4'-methylene diphenyl diisocyanate exposure. Rapid Commun Mass Spectrom. 2019;33(6):600–6. https://doi.org/10.1002/rcm.8380.

    Article  CAS  PubMed  Google Scholar 

  27. Baker GB, Coutts RT, Holt A. Derivatization with acetic anhydride: applications to the analysis of biogenic amines and psychiatric drugs by gas chromatography and mass spectrometry. J Pharmacol Toxicol Methods. 1994;31(3):141–8. https://doi.org/10.1016/1056-8719(94)90076-0.

    Article  CAS  PubMed  Google Scholar 

  28. DFG. 4,4′-Methylene diphenyl diisocyanate (MDI) [ 101-68-8] and “polymeric” MDI (PMDI) [ 9016-87-9] [MAK Value Documentation, 2008]. The MAK-Collection for Occupational Health and Safety. Wiley-VCH Verlag GmbH & Co KGaA; 2015.

  29. Sepai O, Henschler D, Sabbioni G. Albumin adducts, hemoglobin adducts and urinary metabolites in workers exposed to 4,4'-methylenediphenyl diisocyanate. Carcinogenesis. 1995;16(10):2583–7. https://doi.org/10.1093/carcin/16.10.2583.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lekha Sleno or Sébastien Gagné.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lépine, M., Sleno, L., Lesage, J. et al. A validated UPLC-MS/MS method for the determination of aliphatic and aromatic isocyanate exposure in human urine. Anal Bioanal Chem 412, 753–762 (2020). https://doi.org/10.1007/s00216-019-02295-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02295-y

Keywords

Navigation