Skip to main content
Log in

Application of chitosan film as a binding phase in the diffusive gradients in thin films technique (DGT) for measurement of metal ions in aqueous solution

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Diffusive gradients in thin films technique (DGT) allows in situ determination of labile metal in water, soils, and sediments. This paper aims to evaluate the performance of a new proposal of DGT to measure Cu2+ and Cd2+ in aqueous solution using chitosan films as binding agent. These films were prepared and characterized (Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscope, and elemental analysis). The maximum adsorption rates onto chitosan films at initial concentrations of 0.5 and 1.0 mg L−1 for Cu2+ and Cd2+ were 97%, 98% and 60%, 62%, respectively. Effects of main DGT parameters were evaluated and the results obtained suggest that the pH between 4.0 and 6.0 and ionic strength from 0.0008 to 0.1 mol L−1 presented the best ranges for the application of DGT–Chitosan. The results suggest that chitosan films prepared in this work can be an effective binding agent for DGT technique in aqueous solution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Monteiro ASC, Parat C, Rosa AH, Pinheiro JP. Towards field trace metal speciation using electroanalytical techniques and tangential ultrafiltration. Talanta. 2016;152:112–8.

    CAS  PubMed  Google Scholar 

  2. Allen HE, Hansen DJ. The importance of trace metal speciation to water quality criteria. Water Environ Res. 1996;68:42–54.

    CAS  Google Scholar 

  3. Sanz-Medel A. Toxic trace metal speciation: importance and tools for environmental and biological analysis. Pure Appl Chem. 1998;70:2281–5.

    CAS  Google Scholar 

  4. Dias CA, da Costa ASV, Guedes GR, Umbelino GJM, de Souza LG, Alves JH, et al. Impactos do rompimento da barragem de Mariana na qualidade da água do rio Doce. Rev Esp. 2018;7:21–35.

    Google Scholar 

  5. Nabi Bidhendi GR, Karbassi AR, Nasrabadi T, Hoveidi H. Influence of copper mine on surface water quality. Int J Environ Sci Technol. 2007;4:85–91.

    Google Scholar 

  6. Menegário AA, Tonello PS, Durrant SF. Use of Saccharomyces cerevisiae immobilized in agarose gel as a binding agent for diffusive gradients in thin films. Anal Chim Acta. 2010;683:107–12.

    PubMed  Google Scholar 

  7. Cerveny D, Roje S, Turek J, Randak T. Fish fin-clips as a non-lethal approach for biomonitoring of mercury contamination in aquatic environments and human health risk assessment. Chemosphere. 2016;163:290–5.

    CAS  PubMed  Google Scholar 

  8. Goveia D, Lobo FA, Burba P, Fraceto LF, Dias Filho NL, Rosa AH. Approach combining on-line metal exchange and tangential-flow ultrafiltration for in-situ characterization of metal species in humic hydrocolloids. Anal Bioanal Chem. 2010;397:851–60.

    CAS  PubMed  Google Scholar 

  9. Davison W, Zhang H. In situ speciation measurements of trace components in natural waters using thin-film gels. Nature. 1994;367:546–8.

    CAS  Google Scholar 

  10. Dai Y, Nasir M, Zhang Y, Gao J, Lv Y, Lv J. Comparison of DGT with traditional extraction methods for assessing arsenic bioavailability to Brassica chinensis in different soils. Chemosphere. 2018;191:183–9.

    CAS  PubMed  Google Scholar 

  11. Chen M, Ding S, Gao S, Xu S, Yang C, Wu Y, et al. Long-term effects of sediment dredging on controlling cobalt, zinc, and nickel contamination determined by chemical fractionation and passive sampling. Chemosphere. 2019;220:476–85.

    CAS  PubMed  Google Scholar 

  12. Abdulbur-Alfakhoury E, Van Zutphen S, Leermakers M. Development of the diffusive gradients in thin films technique (DGT) for platinum (Pt), palladium (Pd), and rhodium (Rh) in natural waters. Talanta. 2019;203:34–48.

    CAS  PubMed  Google Scholar 

  13. Gao Y, Zhou C, Gaulier C, Bratkic A, Galceran J, Puy J, et al. Labile trace metal concentration measurements in marine environments: from coastal to open ocean areas. TrAC-Trends Anal Chem. 2019;116:92–101.

    CAS  Google Scholar 

  14. Meng Z, You N, Fan HT. In-situ sampling of chlorophenols in industrial wastewater using diffusive gradients in thin films technique based on mesoporous carbon. Chemosphere. 2019;232:18–25.

    CAS  PubMed  Google Scholar 

  15. Xie H, Chen J, Chen Q, Chen CEL, Du J, Tan F, et al. Development and evaluation of diffusive gradients in thin films technique for measuring antibiotics in seawater. Sci Total Environ. 2018;618:1605–12.

    CAS  PubMed  Google Scholar 

  16. Feng Z, Wang Y, Yang L, Sun T. Coupling mesoporous imprinted polymer based DGT passive samplers and HPLC: a new tool for in-situ selective measurement of low concentration tetrabromobisphenol A in freshwaters. Sci Total Environ. 2019;685:442–50.

    CAS  PubMed  Google Scholar 

  17. Guo W, Van Langenhove K, Vandermarken T, Denison MS, Elskens M, Baeyens W, et al. In situ measurement of estrogenic activity in various aquatic systems using organic diffusive gradients in thin-film coupled with ERE-CALUX bioassay. Environ Int. 2019;127:13–20.

    CAS  PubMed  Google Scholar 

  18. Li Y, Chen CEL, Chen W, Chen J, Cai X, Jones KC, et al. Development of a passive sampling technique for measuring pesticides in waters and soils. J Agric Food Chem. 2019;67:6397–406.

    CAS  PubMed  Google Scholar 

  19. Harper MP, Davison W, Zhang H, Tych W. Kinetics of metal exchange between solids and solutions in sediments and soils interpreted from DGT measured fluxes. Geochim Cosmochim Acta. 1998;62:2757–70.

    CAS  Google Scholar 

  20. Wagner K. The use of diffusive gradients in thin films (DGT) for monitoring U and other trace metals in freshwater creeks potentially impacted by mining activities. In: Internal report. 2004. http://www.environment.gov.au/system/files/resources/a92cf0f2-e770-483b-8057-89ff945a7602/files/ir494.pdf Accessed in June 2019

  21. Garmo ØA, RØyset O, Steinnes E, Flaten TP. Performance study of diffusive gradients in thin film for 55 elements. Anal Chem. 2003;75:3573–80.

    CAS  PubMed  Google Scholar 

  22. Sui DP, Fan HT, Li J, Li Y, Li Q, Sun T. Application of poly (ethyleneimine) solution as binding agent in DGT technique for measurement of heavy metals in water. Talanta. 2013;114:276–82.

    CAS  PubMed  Google Scholar 

  23. Fan HT, Liu JX, Sui DP, Yao H, Yan F, Sun T. Use of polymer-bound Schiff base as a new liquid agent of diffusive gradients in thin-films for the measurement of labile Cu2+, Cd2+ and Pb2+. J Hazard Mater. 2013;260:762–9.

    CAS  PubMed  Google Scholar 

  24. Dong J, Fan H, Sui D, Li L, Sun T. Sampling 4-chlorophenol in water by DGT technique with molecularly imprinted polymer as binding agent and nylon membrane as diffusive layer. Anal Chim Acta. 2014;822:69–77.

    CAS  PubMed  Google Scholar 

  25. Chostak CL, Campos MS, Silva SBD, Abate G, Grassi MT. Modified DGT devices using alternative materials for the speciation of trace elements in natural waters. Quim Nova. 2015;38:356–63.

    CAS  Google Scholar 

  26. dos Anjos VE, Abate G, Grassi MT. Potentiality of the use of montmorillonite in diffusive gradients in thin films (DGT) devices for determination of labile species of Cu, Cr, Cd, Mn, Ni, Pb, and Zn in natural waters. Braz J Anal Chem. 2011;04:187–93.

    Google Scholar 

  27. Chen W, Pan S, Cheng H, Sweetman AJ, Zhang H, Jones KC. Diffusive gradients in thin-films (DGT) for in situ sampling of selected endocrine disrupting chemicals (EDCs) in waters. Water Res. 2018;137:211–9.

    CAS  PubMed  Google Scholar 

  28. You N, Li JY, Fan HT, Shen H. In-situ sampling of nitrophenols in industrial wastewaters using diffusive gradients in thin films based on lignocellulose-derived activated carbons. J Adv Res. 2019;15:77–86.

    PubMed  Google Scholar 

  29. Hamed I, Özogul F, Regenstein JM. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol. 2016;48:40–50.

    CAS  Google Scholar 

  30. Ghaee A, Shariaty-Niassar M, Barzin J, Matsuura T. Effects of chitosan membrane morphology on copper ion adsorption. Chem Eng J. 2010;65:46–55.

    Google Scholar 

  31. Shariful MI, Sharif SB, Lee JJL, Habiba U, Ang BC, Amalina MA. Adsorption of divalent heavy metal ion by mesoporous-high surface area chitosan/poly (ethylene oxide) nanofibrous membrane. Carbohydr Polym. 2017;157:57–64.

    CAS  PubMed  Google Scholar 

  32. Sharma G, Naushad M, Al-Muhtaseb AH, Kumar A, Khan MR, Kalia Susheel. Fabrication and characterization of chitosan-crosslinked-poly(alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium. Int J Biol Macromol 2017;95:484–493.

    CAS  PubMed  Google Scholar 

  33. Chen B, Zhao H, Chen S, Long F, Huang B, Yang B, et al. A magnetically recyclable chitosan composite adsorbent functionalized with EDTA for simultaneous capture of anionic dye and heavy metals in complex wastewater. Chem Eng J. 2019;356:69–80.

    CAS  Google Scholar 

  34. Beppu MM, Vieira RS, Aimoli CG, Santana CC. Crosslinking of chitosan membranes using glutaraldehyde: effect on ion permeability and water absorption. J Membr Sci. 2007;301:126–30.

    CAS  Google Scholar 

  35. Vieira RS, Oliveira MLM, Guibal E, Rodríguez-Castellón E, Beppu MM. Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: an XPS investigation of mechanism. Colloids Surf A Physicochem Eng Aspects. 2011;374:108–14.

    CAS  Google Scholar 

  36. He Q, Ao Q, Gong Y, Zhang X. Preparation of chitosan films using different neutralizing solutions to improve endothelial cell compatibility. J Mater Sci Mater Med. 2010;22:2791–802.

    Google Scholar 

  37. Chiou MS, Li HY. Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. Hazard Mater. 2002;93:233–48.

    CAS  Google Scholar 

  38. Zhang H, Davison W. Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Anal Chem. 1995;67:3391–00.

    CAS  Google Scholar 

  39. Yang JK, Lee SM, Davis AP. Effect of background electrolytes and pH on the adsorption of Cu (II)/EDTA onto TiO2. J Colloid Interfaces Sci. 2006;295:14–20.

    CAS  Google Scholar 

  40. Hu XJ, Liu YG, Zeng GM, You SH, Wang H, Hu X, et al. Effects of background electrolytes and ionic strength on enrichment of Cd(II) ions with magnetic grapheme oxide-supported sulfanilic acid. J Colloid Interfaces Sci. 2014;435:138–44.

    CAS  Google Scholar 

  41. Ghosh A, Ali MA, Walls R. Modification of microstructural morphology and physical performance of chitosan films. Int J Biol Macromol. 2010;46:179–86.

    CAS  PubMed  Google Scholar 

  42. Kaushik A, Khan R, Solanki PR, Pandey P, Alam J, Ahmad S, et al. Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosens Bioelectron. 2008;24:676–83.

    CAS  PubMed  Google Scholar 

  43. Zhang X, Yang D, Nie J. Chitosan/polyethylene glycol diacrylate films as potential wound dressing material. Int J Biol Macromol. 2008;43:456–62.

    CAS  PubMed  Google Scholar 

  44. Zhang C, Ping QH, Zhang H. Synthesis and characterization of water-soluble O-succinyl-chitosan. Eur Polym J. 2003;39:1629–34.

    CAS  Google Scholar 

  45. Niranjan R, Koushik C, Saravanan S, Moorthi A, Vairamani M, Selvamurugan N. A novel injectable temperature-sensitive zinc doped chitosan/β-glycerophosphate hydrogel for bone tissue engineering. Int J Biol Macromol. 2013;54:24–9.

    CAS  PubMed  Google Scholar 

  46. Huang G, Chuo YANG, Zhang K, Jeffrey SHI. Adsorptive removal of copper ions from aqueous solution using cross-linked magnetic chitosan beads. Chin J Chem Eng. 2009;17:960–6.

    CAS  Google Scholar 

  47. Krishnapriya KR, Kandaswamy M. A new chitosan biopolymer derivative as metal-complexing agent: synthesis, characterization, and metal (II) ion adsorption studies. Carbohydr Res. 2010;345:2013–22.

    CAS  PubMed  Google Scholar 

  48. Domard A. pH and cd measurements on a fully deacetylated chitosan: application to CuII—polymer interactions. Int J Biol Macromol. 1987;9:98–104.

    CAS  Google Scholar 

  49. Schlick S. Binding sites of copper2+ in chitin and chitosan. An electron spin resonance study. Macromolecules. 1986;19:192–5.

    CAS  Google Scholar 

  50. Milonjić SK. A consideration of the correct calculation of thermodynamic parameters of adsorption. J Serb Chem Soc. 2007;72:1363–7.

    Google Scholar 

  51. Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chem Eng J. 2010;156:2–10.

    CAS  Google Scholar 

  52. Malkoc E, Nuhoglu Y. Investigations of nickel (II) removal from aqueous solutions using tea factory waste. J Hazard Mater. 2005;127:120–8.

    CAS  PubMed  Google Scholar 

  53. Gonzalez-Davila M, Santana-Casiano JM, Millero FJ. The adsorption of Cd (II) and Pb (II) to chitin in seawater. J Colloid Interface Sci. 1990;137:102–10.

    CAS  Google Scholar 

  54. Saifuddin M, Kumaran P. Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electron J Biotechnol. 2005;8:43–53.

    Google Scholar 

  55. Muzzarelli RAA, Tanfani F, Emanuelli M, et al. The chelation of cupric ions by chitosan membranes [Callinectes sapidus, blue crab shell]. J Appl Biochem. 1980;2:380.

    CAS  Google Scholar 

  56. Evans JR, Davids WG, MacRae JD, et al. Kinetics of cadmium uptake by chitosan-based crab shells. Water Res. 2002;36:3219–26.

    CAS  PubMed  Google Scholar 

  57. Allard T, Menguy N, Salomon J, et al. Revealing forms of iron in river-borne material from major tropical rivers of the Amazon Basin (Brazil). Geochim Cosmochim Acta. 2004;68:3079–94.

    CAS  Google Scholar 

  58. Gamage A, Shahidi F. Use of chitosan for the removal of metal ion contaminants and proteins from water. Food Chem. 2007;104:989–96.

    CAS  Google Scholar 

  59. Guibal E. Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol. 2004;38:43–74.

    CAS  Google Scholar 

  60. Warnken KW, Davison W, Zhang H, et al. In situ measurements of metal complex exchange kinetics in freshwater. Environ Sci Technol. 2007;41:3179–85.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Dr. Elidiane Cipriano Rangel from Laboratory of Technological Plasmas, Institute of Science and Technology, Sao Paulo State University, Sorocaba − SP, Brazil, for the micrograph images acquired by scanning electron microscopy (SEM).

Funding

Support for this research was kindly provided by the Brazilian agency Foundation for Research of the State of São Paulo (FAPESP) (2013/07777-0; 2011/05771-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo S. Tonello.

Ethics declarations

No research was conducted using human participants or animals of any kind.

No data, text, or theories by others are presented as if they were the author’s own.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Faria, C.C., Favero, M., Caetano, M.M.M. et al. Application of chitosan film as a binding phase in the diffusive gradients in thin films technique (DGT) for measurement of metal ions in aqueous solution. Anal Bioanal Chem 412, 703–714 (2020). https://doi.org/10.1007/s00216-019-02281-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02281-4

Keywords

Navigation