Skip to main content
Log in

Simultaneous determination of urinary 31 metabolites of VOCs, 8-hydroxy-2′-deoxyguanosine, and trans-3′-hydroxycotinine by UPLC-MS/MS: 13C- and 15N-labeled isotoped internal standards are more effective on reduction of matrix effect

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Human beings are inevitably exposed to volatile organic compounds (VOCs) of anthropogenic emissions as they are ubiquitous atmospheric pollutants. Smoking is an important exposure route of VOCs for the general population. Health effects induced by VOC exposure raise more concerns as they are identified with carcinogenicity, genotoxicity, neurotoxicity, and reproductive toxicity. trans-3′-Hydroxycotinine (OH-Cot) is a urinary biomarker of smoking, and 8-hydroxy-2′-deoxyguanosine (8-OHDG) is a urinary biomarker of DNA oxidative damage. To develop a method for quantifying VOC exposure levels of the general population and assessing the health risks induced by VOCs from second-hand smoking, an effective, rapid, and high-throughput method for the simultaneous determination of 31 metabolites of VOCs, 8-OHDG, and OH-Cot using solid-phase extraction coupled with UPLC-MS/MS was developed and validated. Method precision and accuracy, extraction recoveries, matrix effects, and storage stabilities of most analytes met the criterion (80–120%). Extraction recoveries increased from 85.1 to 100% after adjustment by isotoped internal standards (ISs). Furthermore, 13C- and 15N-labeled ISs were more effective to reduce the influence of matrix effects on recoveries and precisions than the deuterated analogs (73.0–116% vs. 53.6–140%). This developed method was successfully applied to determine urine samples collected from children. Results showed that N-acetyl-S-(3,4-dihydrobutyl)-l-cysteine, 2,2′-thiodiacetic acid (TGA), and N-acetyl-S-(3-hydroxypropyl-1-methyl)-l-cysteine (HPMMA) were well correlated with 8-OHDG with coefficients higher than 0.82, indicating those VOCs might easily lead to DNA damage. In conclusion, our co-monitoring of metabolites of VOCs with 8-OHDG and OH-Cot in one method provides a robust analytical method, which not only suggests the potential adverse health effects induced by VOCs but also discriminates and evaluates the contribution of passive smoking in human VOC exposure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen J, Huang Y, Li G, An T, Hu Y, Li Y. VOCs elimination and health risk reduction in e-waste dismantling workshop using integrated techniques of electrostatic precipitation with advanced oxidation technologies. J Hazard Mater. 2016;302:395–403. https://doi.org/10.1016/j.jhazmat.2015.10.006.

    Article  CAS  PubMed  Google Scholar 

  2. Chen J, Zhang D, Li G, An T, Fu J. The health risk attenuation by simultaneous elimination of atmospheric VOCs and POPs from an e-waste dismantling workshop by an integrated de-dusting with decontamination technique. Chem Eng J. 2016;301:299–305. https://doi.org/10.1016/j.cej.2016.05.013.

    Article  CAS  Google Scholar 

  3. Kumar A, Singh D, Kumar K, Singh BB, Jain VK. Distribution of VOCs in urban and rural atmospheres of subtropical India: temporal variation, source attribution, ratios, OFP and risk assessment. Sci Total Environ. 2018;613-614:492–501. https://doi.org/10.1016/j.scitotenv.2017.09.096.

    Article  CAS  PubMed  Google Scholar 

  4. Hadgsan AT, Daisey JM, Mahanama KRR, Ten Brinka J. Use of volatile tracers to determine the contribution of environmental tobacco smoke to concentrations of volatile organic compounds in smoking environments. Environ Int. 1996;22(3):295–307. https://doi.org/10.1016/0160-4120(96)00015-3.

    Article  Google Scholar 

  5. Hong-Li W, Sheng-Ao J, Sheng-Rong L, Qing-Yao H, Li L, Shi-Kang T, et al. Volatile organic compounds (VOCs) source profiles of on-road vehicle emissions in China. Sci Total Environ. 2017;607-608:253–61. https://doi.org/10.1016/j.scitotenv.2017.07.001.

    Article  CAS  PubMed  Google Scholar 

  6. Wang H, Xiang Z, Wang L, Jing S, Lou S, Tao S, et al. Emissions of volatile organic compounds (VOCs) from cooking and their speciation: a case study for Shanghai with implications for China. Sci Total Environ. 2018;621:1300–9. https://doi.org/10.1016/j.scitotenv.2017.10.098.

    Article  CAS  PubMed  Google Scholar 

  7. Paci E, Pigini D, Caporossi L, De Rosa M, Santoro A, Sisto R, et al. Matrix effect in the quantitative determination of mandelic and phenylglyoxylic acid in urine samples by HPLC-MS/MS with isotopic dilution. Curr Anal Chem. 2013;9(3):439–46. https://doi.org/10.2174/1573411011309030013.

    Article  CAS  Google Scholar 

  8. Agents classified by the IARC monographs, volumes 1–122.

  9. Jackson MA, Stack HF, Rice JM, Waters MD. A review of the genetic and related effects of 1,3-butadiene in rodents and humans. Mutat Res. 2000;463(3):181–213. https://doi.org/10.1016/s1383-5742(00)00056-9.

    Article  CAS  PubMed  Google Scholar 

  10. Kerzic PJ, Irons RD. Distribution of chromosome breakpoints in benzene-exposed and unexposed AML patients. Environ Toxicol Pharmacol. 2017;55:212–6. https://doi.org/10.1016/j.etap.2017.08.033.

    Article  CAS  PubMed  Google Scholar 

  11. Talibov M, Sormunen J, Hansen J, Kjaerheim K, Martinsen JI, Sparen P, et al. Benzene exposure at workplace and risk of colorectal cancer in four Nordic countries. Cancer Epidemiol. 2018;55:156–61. https://doi.org/10.1016/j.canep.2018.06.011.

    Article  PubMed  Google Scholar 

  12. Zhang X, Hou H, Chen H, Liu Y, Wang A, Hu Q. A column-switching LC-MS/MS method for simultaneous quantification of biomarkers for 1,3-butadiene exposure and oxidative damage in human urine. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;1002:123–9. https://doi.org/10.1016/j.jchromb.2015.08.012.

    Article  CAS  PubMed  Google Scholar 

  13. An T, Huang Y, Li G, He Z, Chen J, Zhang C. Pollution profiles and health risk assessment of VOCs emitted during e-waste dismantling processes associated with different dismantling methods. Environ Int. 2014;73:186–94. https://doi.org/10.1016/j.envint.2014.07.019.

    Article  CAS  PubMed  Google Scholar 

  14. Jia C, Yu X, Masiak W. Blood/air distribution of volatile organic compounds (VOCs) in a nationally representative sample. Sci Total Environ. 2012;419:225–32. https://doi.org/10.1016/j.scitotenv.2011.12.055.

    Article  CAS  PubMed  Google Scholar 

  15. Li X, Guo Y, Song X, He Y, Zhang H, Bao H, et al. A cross-sectional survey based on blood VOCs, hematological parameters and urine indicators in a population in Jilin. Northeast China. Environ Geochem Health. 2019. https://doi.org/10.1007/s10653-019-00241-6.

    Article  CAS  Google Scholar 

  16. Boettcher MI, Bolt HM, Drexler H, Angerer J. Excretion of mercapturic acids of acrylamide and glycidamide in human urine after single oral administration of deuterium-labelled acrylamide. Arch Toxicol. 2006;80(2):55–61. https://doi.org/10.1007/s00204-005-0011-y.

    Article  CAS  PubMed  Google Scholar 

  17. Ding YS, Blount BC, Valentin-Blasini L, Applewhite HS, Xia Y, Watson CH, et al. Simultaneous determination of six mercapturic acid metabolites of volatile organic compounds in human urine. Chem Res Toxicol. 2009;22(6):1018–25. https://doi.org/10.1021/tx800468w.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang X, Xiong W, Shi L, Hou H, Hu Q. Simultaneous determination of five mercapturic acid derived from volatile organic compounds in human urine by LC-MS/MS and its application to relationship study. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;967:102–9. https://doi.org/10.1016/j.jchromb.2014.07.013.

    Article  CAS  PubMed  Google Scholar 

  19. Sabatini L, Barbieri A, Indiveri P, Mattioli S, Violante FS. Validation of an HPLC-MS/MS method for the simultaneous determination of phenylmercapturic acid, benzylmercapturic acid and o-methylbenzyl mercapturic acid in urine as biomarkers of exposure to benzene, toluene and xylenes. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;863(1):115–22. https://doi.org/10.1016/j.jchromb.2008.01.022.

    Article  CAS  PubMed  Google Scholar 

  20. Alwis KU, Blount BC, Britt AS, Patel D, Ashley DL. Simultaneous analysis of 28 urinary VOC metabolites using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS). Anal Chim Acta. 2012;750:152–60. https://doi.org/10.1016/j.aca.2012.04.009.

    Article  CAS  PubMed  Google Scholar 

  21. Kotapati S, Esades A, Matter B, Le C, Tretyakova N. High throughput HPLC-ESI(-)-MS/MS methodology for mercapturic acid metabolites of 1,3-butadiene: biomarkers of exposure and bioactivation. Chem Biol Interact. 2015;241:23–31. https://doi.org/10.1016/j.cbi.2015.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hylckama Vlieg JETV. Reactive epoxides as intermediates in the bacterial metabolism of isoprene and chlorinated ethenes: University of Groningen; 1999.

  23. Loft S, Fischer-Nielsen A, Jeding IB, Vistisen K, Poulsen HE. 8-Hydroxydeoxyguanosine as a urinary biomarker of oxidative DNA damage. J Toxicol Environ Health. 1993;40(2-3):391–404. https://doi.org/10.1080/15287399309531806.

    Article  CAS  PubMed  Google Scholar 

  24. Ren L, Fang J, Liu G, Zhang J, Zhu Z. Liu, Lin K, Zhang H, Lu S. Simultaneous determination of urinary parabens, bisphenol A, triclosan, and 8-hydroxy-2′-deoxyguanosine by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Anal Bioanal Chem. 2016;408(10):2621–9. https://doi.org/10.1007/s00216-016-9372-8.

    Article  CAS  PubMed  Google Scholar 

  25. Li J, Lu S, Liu G, Zhou Y, Lv Y, She J, et al. Co-exposure to polycyclic aromatic hydrocarbons, benzene and toluene and their dose-effects on oxidative stress damage in kindergarten-aged children in Guangzhou, China. Sci Total Environ. 2015;524-525:74–80. https://doi.org/10.1016/j.scitotenv.2015.04.020.

    Article  CAS  PubMed  Google Scholar 

  26. Li J, Fan R, Lu S, Zhang D, Zhou Y, Lv Y. Exposure to polycyclic aromatic hydrocarbons could cause their oxidative DNA damage: a case study for college students in Guangzhou. China. Environ Sci Pollut Res Int. 2015;22(3):1770–7. https://doi.org/10.1007/s11356-014-2769-z.

    Article  CAS  PubMed  Google Scholar 

  27. Fan R, Wang D, Mao C, Ou S, Lian Z, Huang S, et al. Preliminary study of children’s exposure to PAHs and its association with 8-hydroxy-2′-deoxyguanosine in Guangzhou. China. Environ Int. 2012;42:53–8. https://doi.org/10.1016/j.envint.2011.03.021.

    Article  CAS  PubMed  Google Scholar 

  28. Liu Y, Shao M, Fu L, Lu S, Zeng L, Tang D. Source profiles of volatile organic compounds (VOCs) measured in China: part I. Atmos Environ. 2008;42(25):6247–60. https://doi.org/10.1016/j.atmosenv.2008.01.070.

    Article  CAS  Google Scholar 

  29. Piller M, Gilch G, Scherer G, Scherer M. Simple, fast and sensitive LC-MS/MS analysis for the simultaneous quantification of nicotine and 10 of its major metabolites. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;951-952:7–15. https://doi.org/10.1016/j.jchromb.2014.01.025.

    Article  CAS  PubMed  Google Scholar 

  30. Lopukhov LV, Laikov AV, Romanova VA, Gatina DZ, Lopukhov VL, Abdulkhakov SR, et al. LC-MS method development for simultaneous determination of trans-3′-hydroxycotinine and three mercapturic acids in urine. BioNanoScience. 2018;8(3):924–9. https://doi.org/10.1007/s12668-018-0528-1.

    Article  Google Scholar 

  31. Fan R, Wang D, Ramage R, She J. Fast and simultaneous determination of urinary 8-hydroxy-2′-deoxyguanosine and ten monohydroxylated polycyclic aromatic hydrocarbons by liquid chromatography/tandem mass spectrometry. Chem Res Toxicol. 2012;25(2):491–9. https://doi.org/10.1021/tx200517h.

    Article  CAS  PubMed  Google Scholar 

  32. EMA. Guideline on bioanalytical method validation. EMEA/CHMP/EWP/192217/20092011.

  33. Sundstrom I, Bondesson U, Hedeland M. Identification of phase I and phase II metabolites of ketobemidone in patient urine using liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr B. 2001;763:121–31.

    Article  CAS  Google Scholar 

  34. Fan R, Ramage R, Wang D, Zhou J, She J. Determination of ten monohydroxylated polycyclic aromatic hydrocarbons by liquid-liquid extraction and liquid chromatography/tandem mass spectrometry. Talanta. 2012;93:383–91. https://doi.org/10.1016/j.talanta.2012.02.059.

    Article  CAS  PubMed  Google Scholar 

  35. Mathias PI, B’Hymer C. A survey of liquid chromatographic-mass spectrometric analysis of mercapturic acid biomarkers in occupational and environmental exposure monitoring. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;964:136–45. https://doi.org/10.1016/j.jchromb.2014.02.057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bergh MS, Bogen IL, Lundanes E, Oiestad AML. Validated methods for determination of neurotransmitters and metabolites in rodent brain tissue and extracellular fluid by reversed phase UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1028:120–9. https://doi.org/10.1016/j.jchromb.2016.06.011.

    Article  CAS  PubMed  Google Scholar 

  37. Fan R, Wang D, She J. Method development for the simultaneous analysis of trans,trans-muconic acid, 1,2-dihydroxybenzene, S-phenylmercapturic acid and S-benzylmercapturic acid in human urine by liquid chromatography/tandem mass spectrometry. Analytical Methods. 2015;7(2):573–80. https://doi.org/10.1039/c4ay02261k.

    Article  CAS  Google Scholar 

  38. Suh JH, Eom HY, Kim U, Kim J, Cho HD, Kang W, et al. Highly sensitive electromembrane extraction for the determination of volatile organic compound metabolites in dried urine spot. J Chromatogr A. 2015;1416:1–9. https://doi.org/10.1016/j.chroma.2015.09.004.

    Article  CAS  PubMed  Google Scholar 

  39. Li G, Wang L, Fei T, Liu H, Wu D, Zheng S. Ionic liquid-based ultrasonic-assisted extraction combined with HPLC–MS/MS for the determination of seven mercapturic acids in human urine. Chromatographia. 2015;78:641–8. https://doi.org/10.1007/s10337-015-2878-y.

    Article  CAS  Google Scholar 

  40. Hartmann EC, Boettcher MI, Schettgen T, Fromme H, Drexler H, Angerer J. Hemoglobin adducts and mercapturic acid excretion of acrylamide and glycidamide in one study population. J Agric Food Chem. 2008;56:6061–8.

    Article  CAS  Google Scholar 

  41. Chiang WC, Chen CY, Lee TC, Lee HL, Lin YW. Fast and simple screening for the simultaneous analysis of seven metabolites derived from five volatile organic compounds in human urine using on-line solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry. Talanta. 2015;132:469–78. https://doi.org/10.1016/j.talanta.2014.09.029.

    Article  CAS  PubMed  Google Scholar 

  42. Marchi I, Rudaz S, Veuthey JL. Sample preparation development and matrix effects evaluation for multianalyte determination in urine. J Pharm Biomed Anal. 2009;49(2):459–67. https://doi.org/10.1016/j.jpba.2008.11.040.

    Article  CAS  PubMed  Google Scholar 

  43. Judak P, Van Eenoo P, Deventer K. Urinary matrix effects in electrospray ionization mass spectrometry in the presence of DMSO. J Mass Spectrom. 2018;53(10):1018–21. https://doi.org/10.1002/jms.4255.

    Article  CAS  PubMed  Google Scholar 

  44. Abe K, Suzuki H, Maekawa M, Shimada M, Yamaguchi H, Mano N. Matrix effect-corrected liquid chromatography/tandem mass-spectrometric method for determining acylcarnitines in human urine. Clin Chim Acta. 2017;468:187–94. https://doi.org/10.1016/j.cca.2017.03.001.

    Article  CAS  PubMed  Google Scholar 

  45. Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem. 2003;75(13):3019–30. https://doi.org/10.1021/ac020361s.

    Article  CAS  PubMed  Google Scholar 

  46. Stokvis E, Rosing H, Beijnen JH. Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry: necessity or not? Rapid Commun Mass Spectrom. 2005;19(3):401–7. https://doi.org/10.1002/rcm.1790.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This research was supported by grants from the National Natural Science Foundation of China (No. 41731279, No. 21477041, No. 21777048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifang Fan.

Ethics declarations

This study was approved by the Research Ethics Committee of South China Normal University (No. 2017012). The parent or guardian of each participant signed an informed consent and was required to complete a questionnaire including gender, age, height, weight, lifestyle habits, and passive smoking frequency as well as the past medical history and genetics of their children before sampling.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary materials

ESM 1

(PDF 348 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, H., Li, Y., Jiang, W. et al. Simultaneous determination of urinary 31 metabolites of VOCs, 8-hydroxy-2′-deoxyguanosine, and trans-3′-hydroxycotinine by UPLC-MS/MS: 13C- and 15N-labeled isotoped internal standards are more effective on reduction of matrix effect. Anal Bioanal Chem 411, 7841–7855 (2019). https://doi.org/10.1007/s00216-019-02202-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02202-5

Keywords

Navigation