Skip to main content

Advertisement

Log in

Simultaneous, rapid, and sensitive quantification of 8-hydroxy-2′-deoxyguanosine and cotinine in human urine by on-line solid-phase extraction LC-MS/MS: correlation with tobacco exposure biomarkers NNAL

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cigarette smoke can increase oxidative DNA damage. The main component in cigarette smoke is nicotine. Nicotine is metabolized to cotinine, which can be regarded as a biomarker for measuring exposure to tobacco smoke. A sensitive, simple, and robust method based on on-line solid-phase extraction liquid chromatography with tandem mass spectrometry (on-line SPE LC-MS/MS) has been developed and validated for the simultaneous determination of 8-OHdG and cotinine. The matrix effects of 8-OHdG and cotinine were measured at 97.1 and 91.7 %, with values for CV at 4.4 and 4.2 %, respectively. The limits of detection of 8-OHdG and cotinine were 10.0 and 5.5 pg mL−1, and the limits of quantification were 40.0 and 20.0 pg mL−1, respectively. The total run time was 12 min. We quantified 8-OHdG and cotinine in the urine of 80 male subjects. The results showed the levels of 8-OHdG and cotinine in smokers were significantly higher than that in non-smokers. Furthermore, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and its glucuronide conjugate (defined as total NNAL) are the nitrosation metabolites of nicotine. In this study, urinary levels of 8-OHdG and cotinine were well correlated with urinary levels of total NNAL. This is also the first study to focus on the future risk of oxidative stress from exposure to cigarette smoke based on the relationship between 8-OHdG levels, cotinine levels, and total NNAL concentrations in the urine of humans.

On-line SPE LC-MS/MS for the simultaneous determination of 8-OHdG and cotinine in human urine

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kohen R, Nyska A. Invited review: oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 2002;30:620–50.

    Article  CAS  Google Scholar 

  2. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    Article  CAS  Google Scholar 

  3. Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN. Oxidative damage to DNA during aging: 8-hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci U S A. 1990;87:4533–7.

    Article  CAS  Google Scholar 

  4. Isobe C, Abe T, Terayama Y. Levels of reduced and oxidized coenzyme Q-10 and 8-hydroxy-2′-deoxyguanosine in the cerebrospinal fluid of patients with living Parkinson’s disease demonstrate that mitochondrial oxidative damage and/or oxidative DNA damage contributes to the neurodegenerative process. Neurosci Lett. 2010;469:159–63.

    Article  CAS  Google Scholar 

  5. Watanabe E, Matsuda N, Shiga T, Kajimoto K, Ajiro Y, Kawarai H, et al. Significance of 8-hydroxy-2′-deoxyguanosine levels in patients with idiopathic dilated cardiomyopathy. J Card Fail. 2006;12:527–32.

    Article  CAS  Google Scholar 

  6. Bartsch H, Nair J. New DNA-based biomarkers for oxidative stress and cancer chemoprevention studies. Eur J Cancer. 2000;36:1229–34.

    Article  CAS  Google Scholar 

  7. Cai Z, Zhao B, Ratka A. Oxidative stress and β-amyloid protein in Alzheimer’s disease. NeuroMolecular Med. 2011;13:223–50.

    Article  CAS  Google Scholar 

  8. Rossner Jr P, Svecova V, Milcova A, Lnenickova Z, Solansky I, Sram RJ. Seasonal variability of oxidative stress markers in city bus drivers: part I. Oxidative damage to DNA. Mutat Res/Fundam Mol Mech Mutagen. 2008;642:14–20.

    Article  CAS  Google Scholar 

  9. Cooke MS, Evans MD, Dove R, Rozalski R, Gackowski D, Siomek A, et al. DNA repair is responsible for the presence of oxidatively damaged DNA lesions in urine. Mutat Res/Fundam Mol Mech Mutagen. 2005;574:58–66.

    Article  CAS  Google Scholar 

  10. Hecht SS. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer. 2003;3:733–44.

    Article  CAS  Google Scholar 

  11. Loft S, Vistisen K, Ewertz M, Tjønneland A, Overvad K, Poulsen HE. Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans: influence of smoking, gender and body mass index. Carcinogenesis. 1992;13:2241–7.

    Article  CAS  Google Scholar 

  12. Kanaya S, Ikeya M, Yamamoto K, Moriya T, Furuhashi K, Sonoda M, et al. Comparison of an oxidative stress biomarker “urinary 8-hydroxy-2′-deoxyguanosine,” between smokers and non-smokers. BioFactors. 2004;22:255–8.

    Article  CAS  Google Scholar 

  13. Kataoka H, Mizuno K, Oda E, Saito A. Determination of the oxidative stress biomarker urinary 8-hydroxy-2′-deoxyguanosine by automated on-line in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1019:140–6.

    Article  CAS  Google Scholar 

  14. Campos C, Guzmán R, López-Fernández E, Casado Á. Urinary biomarkers of oxidative/nitrosative stress in healthy smokers. Inhal Toxicol. 2011;23:148–56.

    Article  Google Scholar 

  15. Lu CY, Ma YC, Chen PC, Wu CC, Chen YC. Oxidative stress of office workers relevant to tobacco smoking and inner air quality. Int J Environ Res Public Health. 2014;11:5586–97.

    Article  CAS  Google Scholar 

  16. Benowitz NL, Jacob P. Metabolism of nicotine to cotinine studied by a dual stable isotope method. Clin Pharmacol Ther. 1994;56:483–93.

    Article  CAS  Google Scholar 

  17. Shakleya DM, Huestis MA. Simultaneous and sensitive measurement of nicotine, cotinine, trans-3′-hydroxycotinine and norcotinine in human plasma by liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2009;877:3537–42.

    Article  CAS  Google Scholar 

  18. Baumann F, Regenthal R, Burgos-Guerrero IL, Hegerl U, Preiss R. Determination of nicotine and cotinine in human serum by means of LC/MS. J Chromatogr B. 2010;878:107–11.

    Article  CAS  Google Scholar 

  19. Kardani F, Daneshfar A, Sahrai R. Determination of nicotine, anabasine, and cotinine in urine and saliva samples using single-drop microextraction. J Chromatogr B. 2010;878:2857–62.

    Article  CAS  Google Scholar 

  20. Jarvis MJ, Primatesta P, Erens B, Feyerabend C, Bryant A. Measuring nicotine intake in population surveys: comparability of saliva cotinine and plasma cotinine estimates. Nicotine Tob Res. 2003;5:349–55.

    Article  CAS  Google Scholar 

  21. Bernert JT, McGuffey JE, Morrison MA, Pirkle JL. Comparison of serum and salivary cotinine measurements by a sensitive high-performance liquid chromatography-tandem mass spectrometry method as an indicator of exposure to tobacco smoke among smokers and nonsmokers. J Anal Toxicol. 2000;24:333–9.

    Article  CAS  Google Scholar 

  22. Jarvis MJ, Tunstall-Pedoe H, Feyerabend C, Vesey C, Saloojee Y. Comparison of tests used to distinguish smokers from nonsmokers. Am J Public Health. 1987;77:1435–8.

    Article  CAS  Google Scholar 

  23. Shimoi K, Kasai H, Yokota N, Toyokuni S, Kinae N. Comparison between high-performance liquid chromatography and enzyme-linked immunosorbent assay for the determination of 8-hydroxy-2′-deoxyguanosine in human urine. Cancer Epidemiol Biomark Prev. 2002;11:767–70.

    CAS  Google Scholar 

  24. Park S, Lee DH, Park JG, Lee YT, Chung J. A sensitive enzyme immunoassay for measuring cotinine in passive smokers. Clin Chim Acta. 2010;411:1238–42.

    Article  CAS  Google Scholar 

  25. Tagesson C, Kallberg M, Klintenberg C, Starkhammar H. Determination of urinary 8-hydroxydeoxyguanosine by automated coupled-column high performance liquid chromatography: a powerful technique for assaying in vivo oxidative DNA damage in cancer patients. Eur J Cancer. 1995;31A:934–40.

    Article  CAS  Google Scholar 

  26. Samcová E, Marhol P, Opekar F, Langmaier J. Determination of urinary 8-hydroxy-2′-deoxyguanosine in obese patients by HPLC with electrochemical detection. Anal Chim Acta. 2004;516:107–10.

    Article  Google Scholar 

  27. Lin HS, Jenner AM, Ong CN, Huang SH, Whiteman M, Halliwell B. A high-throughput and sensitive methodology for the quantification of urinary 8-hydroxy-2′-deoxyguanosine: measurement with gas chromatography–mass spectrometry after single solid-phase extraction. Biochem J. 2004;380:541–8.

    Article  CAS  Google Scholar 

  28. Man CN, Gam LH, Ismail S, Lajis R, Awang R. Simple, rapid and sensitive assay method for simultaneous quantification of urinary nicotine and cotinine using gas chromatography–mass spectrometry. J Chromatogr B. 2006;844:322–7.

    Article  CAS  Google Scholar 

  29. Li MJ, Zhang JB, Li WL, Chu QC, Ye JN. Capillary electrophoretic determination of DNA damage markers: content of 8-hydroxy-2′-deoxyguanosine and 8-nitroguanine in urine. J Chromatogr B. 2011;879:3818–22.

    Article  CAS  Google Scholar 

  30. Wang CJ, Yang NH, Chang CC, Liou SH, Lee HL. Rapid and simple one-step membrane extraction for the determination of 8-hydroxy-2′-deoxyguanosine in human plasma by a combination of on-line solid phase extraction and LC–MS/MS. J Chromatogr B. 2011;879:3538–43.

    Article  CAS  Google Scholar 

  31. Hosozumi C, Toriba A, Chuesaard T, Kameda T, Tang N, Hayakawa K. Analysis of 8-hydroxy-2′-deoxyguanosine in human urine using hydrophilic interaction chromatography with tandem mass spectrometry. J Chromatogr B. 2012;893–894:173–6.

    Article  Google Scholar 

  32. Harri M, Kasai H, Mori T, Tornaeus J, Savela K, Peltonen K. Analysis of 8-hydroxy-2′-deoxyguanosine in urine using high-performance liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr B. 2007;853:242–6.

    Article  CAS  Google Scholar 

  33. Li P, Beck WD, Callahan PM, Terry Jr AV, Bartlett MG. Quantitation of cotinine and its metabolites in rat plasma and brain tissue by hydrophilic interaction chromatography tandem mass spectrometry (HILIC–MS/MS). J Chromatogr B. 2012;907:117–25.

    Article  CAS  Google Scholar 

  34. Jacob Iii P, Yu L, Duan M, Ramos L, Yturralde O, Benowitz NL. Determination of the nicotine metabolites cotinine and trans-3′-hydroxycotinine in biologic fluids of smokers and non-smokers using liquid chromatography–tandem mass spectrometry: biomarkers for tobacco smoke exposure and for phenotyping cytochrome P450 2A6 activity. J Chromatogr B. 2011;879:267–76.

    Article  Google Scholar 

  35. Sabatini L, Barbieri A, Tosi M, Roda A, Violante FS. A method for routine quantitation of urinary 8-hydroxy-2′-deoxyguanosine based on solid-phase extraction and micro-high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2005;19:147–52.

    Article  CAS  Google Scholar 

  36. Song L, Davis W, Abrams SM, Hemiup J, Latif Kazim A, Michael Cummings K, et al. Sensitive and rapid method for the determination of urinary cotinine in non-smokers: an application for studies assessing exposures to second hand smoke (SHS). Anal Chim Acta. 2005;545:200–8.

    Article  CAS  Google Scholar 

  37. Scheidweiler KB, Shakleya DM, Huestis MA. Simultaneous quantification of nicotine, cotinine, trans-3′-hydroxycotinine, norcotinine and mecamylamine in human urine by liquid chromatography–tandem mass spectrometry. Clin Chim Acta. 2012;413:978–84.

    Article  CAS  Google Scholar 

  38. Meger M, Meger-Kossien I, Schuler-Metz A, Janket D, Scherer G. Simultaneous determination of nicotine and eight nicotine metabolites in urine of smokers using liquid chromatography–tandem mass spectrometry. J Chromatogr B. 2002;778:251–61.

    Article  CAS  Google Scholar 

  39. Ceppa F, El Jahiri Y, Mayaudon H, Dupuy O, Burnat P. High-performance liquid chromatographic determination of cotinine in urine in isocratic mode. J Chromatogr B. 2000;746:115–22.

    Article  CAS  Google Scholar 

  40. Zhang S, Song X, Zhang W, Luo N, Cai L. Determination of low urinary 8-hydroxy-2′-deoxyguanosine excretion with capillary electrophoresis and molecularly imprinted monolith solid phase microextraction. Sci Total Environ. 2013;450–451:266–70.

    Article  Google Scholar 

  41. Chiang WC, Chen CY, Lee TC, Lee HL, Lin YW. Fast and simple screening for the simultaneous analysis of seven metabolites derived from five volatile organic compounds in human urine using on-line solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry. Talanta. 2015;132:469–78.

    Article  CAS  Google Scholar 

  42. Zhou X, Ye X, Calafat AM. Automated on-line column-switching HPLC–MS/MS method for the quantification of triclocarban and its oxidative metabolites in human urine and serum. J Chromatogr B. 2012;881–882:27–33.

    Article  Google Scholar 

  43. Lee HL, Wang C, Lin S, Hsieh DPH. Liquid chromatography/tandem mass spectrometric method for the simultaneous determination of tobacco-specific nitrosamine NNK and its five metabolites. Talanta. 2007;73:76–80.

    Article  Google Scholar 

  44. Hecht SS. Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem Res Toxicol. 1998;11:559–603.

    Article  CAS  Google Scholar 

  45. Rivenson A, Hoffmann D, Prokopczyk B, Amin S, Hecht SS. Induction of lung and exocrine pancreas tumors in F344 rats by tobacco-specific and areca-derived N-nitrosamines. Cancer Res. 1988;48:6912–7.

    CAS  Google Scholar 

  46. Upadhyaya P, Carmella SG, Guengerich FP, Hecht SS. Formation and metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol enantiomers in vitro in mouse, rat and human tissues. Carcinogenesis. 2000;21:1233–8.

    Article  CAS  Google Scholar 

  47. Carmella SG, Han S, Fristad A, Yang Y, Hecht SS. Analysis of total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in human urine. Cancer Epidemiol Biomarkers Prev. 2003;12:1257–61.

    CAS  Google Scholar 

  48. Jing M, Wang Y, Upadhyaya P, Jain V, Yuan JM, Hatsukami DK, et al. Liquid chromatography–electrospray ionization–tandem mass spectrometry quantitation of urinary [pyridine-d4]4-hydroxy-4-(3-pyridyl)butanoic acid, a biomarker of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone metabolic activation in smokers. Chem Res Toxicol. 2014;27:1547–55.

    Article  CAS  Google Scholar 

  49. Chung CJ, Pu YS, Shiue HS, Lee HL, Lin P, Yang HY, et al. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism-related enzymes gene polymorphisms, NNK metabolites levels and urothelial carcinoma. Toxicol Lett. 2013;216:16–22.

    Article  CAS  Google Scholar 

  50. Yang JY, Ahn HK, Lee SW, Han YJ, Oh YJ, Velázquez-Armenta EY, et al. Simple high-throughput analytical method using ultra-performance liquid chromatography coupled with tandem mass spectrometry to quantify total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in urine. Clin Chem Lab Med. 2015;53:1249–57.

    Article  CAS  Google Scholar 

  51. Carmella SG, Akerkar SA, Richie JP, Hecht SS. Intraindividual and interindividual differences in metabolites of the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in smokers’ urine. Cancer Epidemiol Biomark Prev. 1995;4:635–42.

    CAS  Google Scholar 

  52. Wall MA, Johnson J, Jacob P, Benowitz NL. Cotinine in the serum, saliva, and urine of nonsmokers, passive smokers, and active smokers. Am J Public Health. 1988;78:699–701.

    Article  CAS  Google Scholar 

  53. Behera D, Uppal R, Majumdar S. Urinary levels of nicotine & cotinine in tobacco users. Indian J Med Res. 2003;118:129–33.

    CAS  Google Scholar 

  54. Zielinska-Danch W, Wardas W, Sobczak A, Szoltysek-Boldys I. Estimation of urinary cotinine cut-off points distinguishing non-smokers, passive and active smokers. Biomarkers. 2007;12:484–96.

    Article  CAS  Google Scholar 

  55. Ravanat JL, Duretz B, Guiller A, Douki T, Cadet J. Isotope dilution high-performance liquid chromatography-electrospray tandem mass spectrometry assay for the measurement of 8-oxo-7,8-dihydro-2′-deoxyguanosine in biological samples. J Chromatogr B. 1998;715:349–56.

    Article  CAS  Google Scholar 

  56. Valavanidis A, Vlachogianni T, Fiotakis K. Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int J Environ Res Public Health. 2009;6:445–62.

    Article  CAS  Google Scholar 

  57. O’Neill IK, Fishbein L. An IARC manual series aimed at assisting cancer epidemiology and prevention. “Environmental carcinogens: selected methods of analysis”. Int J Environ Anal Chem. 1986;26:229–40.

    Article  Google Scholar 

  58. Goniewicz ML, Eisner MD, Lazcano-Ponce E, Zielinska-Danch W, Koszowski B, Sobczak A, et al. Comparison of urine cotinine and the tobacco-specific nitrosamine metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and their ratio to discriminate active from passive smoking. Nicotine Tob Res. 2011;13:202–8.

    Article  CAS  Google Scholar 

  59. Zhang P, Lian K, Wu X, Yao M, Lu X, Kang W, et al. Evaluation of the oxidative deoxyribonucleic acid damage biomarker 8-hydroxy-2′-deoxyguanosine in the urine of leukemic children by micellar electrokinetic capillary chromatography. J Chromatogr A. 2014;1336:112–9.

    Article  CAS  Google Scholar 

  60. Chiang HC, Huang YK, Chen PF, Chang CC, Wang CJ, Lin P, et al. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone is correlated with 8-hydroxy-2′-deoxyguanosine in humans after exposure to environmental tobacco smoke. Sci Total Environ. 2012;414:134–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants number MOST104-2113-M-030-004 from the Ministry of Science and Technology, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Ling Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consents

The informed consents were signed by all individual participants before they participated this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CY., Jhou, YT., Lee, HL. et al. Simultaneous, rapid, and sensitive quantification of 8-hydroxy-2′-deoxyguanosine and cotinine in human urine by on-line solid-phase extraction LC-MS/MS: correlation with tobacco exposure biomarkers NNAL. Anal Bioanal Chem 408, 6295–6306 (2016). https://doi.org/10.1007/s00216-016-9741-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9741-3

Keywords

Navigation